全文获取类型
收费全文 | 176篇 |
免费 | 7篇 |
国内免费 | 37篇 |
专业分类
化学 | 116篇 |
晶体学 | 3篇 |
力学 | 8篇 |
物理学 | 93篇 |
出版年
2023年 | 6篇 |
2022年 | 3篇 |
2021年 | 3篇 |
2020年 | 4篇 |
2019年 | 7篇 |
2018年 | 7篇 |
2017年 | 5篇 |
2016年 | 4篇 |
2015年 | 7篇 |
2014年 | 10篇 |
2013年 | 11篇 |
2012年 | 6篇 |
2011年 | 18篇 |
2010年 | 15篇 |
2009年 | 13篇 |
2008年 | 17篇 |
2007年 | 19篇 |
2006年 | 9篇 |
2005年 | 13篇 |
2004年 | 7篇 |
2003年 | 8篇 |
2002年 | 5篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 3篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1976年 | 1篇 |
排序方式: 共有220条查询结果,搜索用时 15 毫秒
11.
Synthesis of micro- or nano-crystalline diamond films on WC-Co substrates with various pretreatments by hot filament chemical vapor deposition 总被引:4,自引:0,他引:4
Diamond films deposited on tungsten carbide can lead to major improvements in the life and performance of cutting tools. However, deposition of diamond onto cemented tungsten carbide (WC-Co) is problematic due to the cobalt binder in the WC. This binder provides additional toughness to the tool but results in poor adhesion and low nucleation density of any diamond film. A two-step chemical etching pretreatment (Murakami reagent and Caro acid, (MC)-pretreatment) and a boronization pretreatment have both been used extensively to improve adhesion of CVD diamond film on WC-Co substrates. Here we discuss the applicability of MC-pretreatment for a range of Co-containing WC-Co substrates, and demonstrate a controlled synthesis process based on liquid boronizing pretreatment for obtaining smooth and dense micro- or nano-crystalline diamond films on high Co-containing WC-Co substrates. Substrate treatments and deposition parameters were found to have major influences on the smoothness, structure and quality of the diamond films. The best quality diamond films were achieved under conditions of relatively high substrate temperature (Ts) and the best adhesion was achieved at Ts = 800 °C. 相似文献
12.
采用化学气相沉积技术,利用旋转涂膜法制备催化剂基底材料,通过对涂膜过程中的角速度、旋转时间以及基底还原过程中温度的控制改变催化剂颗粒的分布状态,获得了粒径均匀分布的催化剂基底,该基底上催化剂颗粒集中分布在47~62 nm区间,再利用该基底生长出定向碳纳米管阵列。运用扫描电镜、透射电镜、拉曼光谱仪对样品进行了表征。结果表明旋转涂膜法制备的基底平整性好于普通的滴膜法,且较其它基底制备方法具有简单易控、可使催化剂均匀分散等特点。利用该基底制备的碳纳米管阵列定向性良好。 相似文献
13.
《Electroanalysis》2004,16(19):1576-1582
DeniLite laccase immobilized Pt electrode was used for detection of catechol and catecholamines. The enzymatically oxidized substrates were measured amperometrically. The sensitivities are 210, 75, 60 and 45 nA/μM with the upper limits of linear ranges of 58, 40, 55 and 55 μM and the detection limits (S/N=3) of 0.07, 0.2, 0.3 and 0.4 μM for catechol, dopamine (DA), norepinephrine (NEPI) and epinephrine (EPI), respectively. The response time (t90%) is about 2 seconds for each substrate and the long‐term stability is around 40–50 days with retaining 80% of initial activity. The very fast response and the remarkable long‐term stability are the principal advantages of this sensor. In case of catechol, the pH response of the sensor is mainly determined by enzyme's pH profile, however, in case of catecholamines, both enzyme's pH profile and reversibility of the substrate are operated and the optimal pHs for NEPI and EPI shift towards acidic range compared to that for DA. The presence of ascorbic acid (<50 μM) did not interfere with the measurement. 相似文献
14.
Michaël Ternon 《Tetrahedron》2004,60(39):8721-8728
FRET based systems are some of the best methods available to detect and monitor proteolytic activity. To enhance fluorescent signals and hence assay sensitivity, two different systems were developed using two different dendrimeric constructs. In the first case, a triple branched dendrimer bearing three dansyl groups was used to enhance assay sensitivity and showed a significant enhancement of fluorescence following enzymatic cleavage. In another example, a tris-fluorescein probe, that undergoes self-quenching, was utilized in a combinatorial library synthesis to map the substrate specificity of proteases. 相似文献
15.
Stuart D. R.?GallowayEmail author Elizabeth M.?Broad 《Monatshefte für Chemie / Chemical Monthly》2005,136(8):1391-1410
Summary. Oral L-carnitine supplementation is frequently reported to have beneficial effects on exercise capacity in clinical populations and has been considered as a potential ergogenic aid for endurance athletes. However, this latter view is largely unsubstantiated possibly due to many experimental studies being poorly controlled or difficult to compare. The potential for oral L-carnitine supplementation to influence skeletal muscle carnitine content has been questioned and there are several key factors identified that may explain variations between study outcomes. Recent more well controlled research suggests some potential for L-carnitine to act as a key regulator of cellular stress, possibly through an impact on the integration of carbohydrate and lipid metabolism, and this work should be followed up in future by well controlled studies in both athlete and clinical subject groups. 相似文献
16.
V. Kavan Kumar R. Mahendiran P. Subramanian S. Karthikeyan A. Surendrakumar 《印度化学会志》2022,99(3):100384
One of the most significant issues of the last few decades has been tracing for renewable energy sources. Animal fleshing (ANFL) is the most common proteinaceous solid waste accured during the production of leather and it must be disposed of in an environmentally responsible manner. This paper is attempts to assess the biogas production from solid waste originating from the chrome based tannery. Anaerobic digestion of these wastes will be a viable option for waste stabilization and energy production in the form of biogas to be utilized in the industry. The bio-methane potential of the wastes were examined by mixing these wastes with various sources of inoculum and different inoculum to substrate (I/S) ratio considered. The batch experiments were carried out in 2.5 l glass reactors with a various source of inoculumviz., Cow Dung (CD), Elephant Dung (ED) and Bio-Digested Slurry (BDS) with varied inoculum to substrate (LFs) ratios for a retention time of 50 days with replications. The results obtained from the experiments showed that BDS:LF (25:75) had the highest gas production of 14505 ml (651.85 ml CH4g?1 VS) followed by CD:LF (50:50) produced 12072.5 ml (789.36 ml CH4g?1 VS) and ED:LF (75:25) produced 11252.5 ml (1492.08 ml CH4g?1 VS)with a methane content of 63.77, 61.92 and 62.72%, respectively. 相似文献
17.
Increasing evidence suggests that Cyclin A-Cdk2 activity is required in the apoptosis process induced by various stimuli. To determine a specific substrate of Cyclin A-Cdk2 for apoptosis, in this study, we carried out anin vitro kinase assay using immunoprecipitated complex Cyclin A-Cdk2 as an enzyme source, and recombinant protein GST-Bad as a substrate. Our study showed that Bad was clearly phosphorylated by Cyclin A-Cdk2 in vitro. To examine whether protein Bad can also be phosphorylated by Cyclin A-Cdk2 kinase in vivo, we transiently overexpressed protein Bad with Cyclin A or Cdk2-dn, a dominant negative version of Cdk2, in Hela cells and determined the phosphorylation status of protein Bad. The test showed that protein Bad was clearly phosphorylated in Cyclin A overexpressed cells,but not in Cdk2-dn or mock transfectent. Moreover, etoposide also caused the phosphorylation of endogenetic Bad. In conclusion, here we provide first time evidence that protein Bad can be a substrate of Cyclin A-Cdk2 apoptosis for in vitro and in vivo. 相似文献
18.
Cytochrome P450 OleTSA, a new cytochrome P450 enzyme from Staphylococcus aureus, catalyzes the oxidative decarboxylation and hydroxylation of fatty acids to generate terminal alkenes and fatty alcohols. The mechanism of this bifurcative chemistry remains largely unknown. Herein, a class of derivatized fatty acids were synthesized as probes to investigate the effects of substrate structure on the product type of P450 OleTSA. The results demonstrate that the fine-tuned structure of substrates, even in a remote distance from the carboxyl group, significantly regulates OleT catalyzed decarboxylation/hydroxylation reactions. Molecular docking analysis indicated the potential interactions between the carboxylate groups of different probes and the enzyme active center which was attributed to the bifurcative chemistry. 相似文献
19.
Wen-Wen Zhang Prof. Dr. Bi-Jie Li 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2023,135(1):e202214534
Despite the advances in the area of catalytic alkene hydrosilylation, the enantioselective hydrosilylation of alkenes bearing a heteroatom substituent is scarce. Here we report a rhodium-catalyzed hydrosilylation of β,β-disubstituted enamides to directly afford valuable α-aminosilanes in a highly regio-, diastereo-, and enantioselective manner. Stereodivergent synthesis could be achieved by regulating substrate geometry and ligand configuration to generate all the possible stereoisomers in high enantio-purity. 相似文献
20.
Chunlin Xie Shengfang Liu Wenxu Zhang Huimin Ji Shengqi Chu Qi Zhang Yougen Tang Haiyan Wang 《Angewandte Chemie (International ed. in English)》2023,62(28):e202304259
Rechargeable zinc metal batteries are promising for large-scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ-valerolactone-based electrolyte and nanocarbon-coated aluminum substrate was reported to solve the above problems. The electrolyte with extremely low freezing point and high thermal stability enables the symmetric cells with long cycle life over a wide temperature range (−50 °C to 80 °C) due to its ability to regulate zinc nucleation and preferential epitaxial growth. Besides, the nanocarbon-coated aluminum substrate can also promote a higher Coulombic efficiency over a wide temperature range in contrast to the low Coulombic efficiency of copper substrates with significant irreversible alloying reactions because this unique substrate with excellent chemical stabilization can homogenize the interfacial electron/ion distribution. The optimized zinc metal capacitors can operate stably under various temperature conditions (2000 cycles at 30 °C with 66 % depth of discharge and 1200 cycles at 80 °C with 50 % depth of discharge). This unique electrolyte and substrate design strategy achieves a robust zinc metal battery over a wide temperature range. 相似文献