首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4548篇
  免费   446篇
  国内免费   256篇
化学   4267篇
晶体学   21篇
力学   86篇
综合类   6篇
数学   376篇
物理学   494篇
  2023年   55篇
  2022年   107篇
  2021年   121篇
  2020年   114篇
  2019年   130篇
  2018年   99篇
  2017年   116篇
  2016年   253篇
  2015年   243篇
  2014年   233篇
  2013年   333篇
  2012年   324篇
  2011年   296篇
  2010年   293篇
  2009年   300篇
  2008年   239篇
  2007年   234篇
  2006年   216篇
  2005年   184篇
  2004年   144篇
  2003年   84篇
  2002年   315篇
  2001年   94篇
  2000年   41篇
  1999年   53篇
  1998年   72篇
  1997年   53篇
  1996年   52篇
  1995年   35篇
  1994年   45篇
  1993年   30篇
  1992年   26篇
  1991年   22篇
  1990年   15篇
  1989年   18篇
  1988年   17篇
  1987年   20篇
  1986年   17篇
  1985年   21篇
  1984年   15篇
  1983年   9篇
  1982年   13篇
  1980年   9篇
  1979年   17篇
  1978年   25篇
  1977年   34篇
  1976年   21篇
  1975年   12篇
  1974年   7篇
  1973年   15篇
排序方式: 共有5250条查询结果,搜索用时 15 毫秒
31.
Summary Polymerisation of bicontinuous microemulsions yields porous monolithic structures with well defined pore sizes that are potentially suitable for use as stationary phases for capillary electrochromatography (CEC). A variety of pore sizes can be achieved by altering the composition of the microemulsion, which typically consists of butyl methacrylate (BMA) and ethylene glycol dimethacrylate (EGDMA) as the polymerisable oil phase. The aqueous phase consists of water, a surfactant (sodium dodecyl sulphate, SDS) and a co-surfactant (1-propanol). 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) is also added to provide charges along the polymer backbone to allow electroosmotic flow (EOF) to occur. SEM analysis shows that in-situ polymerisation yields a monolithic structure with a porous topography. Investigations have shown that these monoliths are easy to prepare, robust and suitable for the separation of phthalates. They generate higher linear velocities than are achieved using the silica based HPLC packings normally used for CEC.  相似文献   
32.
Ionic substances with melting points close to room temperature are referred to as ionic liquids. Because ionic liquids are environmentally benign and are good solvents for a wide range of both organic and inorganic materials, interest for their potential uses in different chemical processes is increasing. In this paper, a capillary electrophoretic method for the analysis of basic proteins including lysozyme, cytochrome c, trypsinoge, and α-chymotyypsinogen A is reported. The method, in which 1-alkyl-3-methylimidazolium-based ionic liquids are used as the running electrolytes, leads to a surface charge reversal on the capillary wall. The effects of the alkyl group, imidazolium counterion, and the concentration of the ionic liquids were discussed. The optimum buffer system was a 90 mM 1-ethyl-3-methylimidazolium tetrafluoroborate (1E-3MI-TFB) solution. The applied voltage was −15 kV and detection was performed by monitoring absorbance at 240 nm. Baseline separation, high efficiencies, and symmetrical peaks of four proteins were obtained. The R.S.D. values of migration times and peak areas were <0.68 and <3.0%, respectively. The separation mechanism seems to involve association between the imidazolium cations and the proteins.  相似文献   
33.
We report a molecular dynamics study of the solvation of UO2(2+), Eu3+ and Eu2+ ions in two "basic" (Lewis acidity) room-temperature ionic liquids (IL) composed of the 1-ethyl-3-methylimidazolium cation (EMI+) and a mixture of AlCl4- and Cl- anions, in which the Cl-/AlCl4- ratio is about 1 and 3, respectively. The study reveals the importance of the [UO2Cl4]2- species, which spontaneously form during most simulations, and that the first solvation shell of europium is filled with Cl- and AlCl4- ions embedded in a cationic EMI+ shell. The stability of the [UO2Cl4]2- and [Eu(III)Cl6]3- complexes is supported by quantum mechanical calculations, according to which the uranyl and europium cations intrinsically prefer Cl- to the AlCl4- ion. In the gas phase, however, [Eu(III)Cl6]3- and [Eu(II)Cl6]4- complexes are predicted to be metastable and to lose two to three Cl- ions. This contrasts with the results of simulations of complexes in ILs, in which the "solvation" of the europium complexes increases with the number of coordinated chlorides, leading to an equilibrium between different chloro species. The behavior of the hydrated [Eu(OH2)8]3+ complex is considered in the basic liquids; the complex exchanges H2O molecules with Cl- ions to form mixed [EuCl3(OH2)4] and [EuCl4(OH2)3]- complexes. The results of the simulations allow us to better understand the microscopic nature and solvation of lanthanide and actinide complexes in "basic" ionic liquids.  相似文献   
34.
Stable transition-metal nanoparticles of the type [M(0)](n) are easily accessible through the reduction of Ir(I) or Rh(III) compounds dissolved in "dry" 1-n-butyl-3-methylimidazolium hexafluorophosphate ionic liquid by molecular hydrogen. The formation of these [M(0)](n) nanoparticles is straightforward; they are prepared in dry ionic liquid whereas the presence of the water causes the partial decomposition of ionic liquid with the formation of phosphates, HF and transition-metal fluorides. Transmission electron microscopy (TEM) observations and X-ray diffraction analysis (XRD) show the formation of [Ir(0)](n) and [Rh(0)](n) nanoparticles with 2.0-2.5 nm in diameter. The isolated [M(0)](n) nanoparticles can be redispersed in the ionic liquid, in acetone or used in solventless conditions for the liquid-liquid biphasic, homogeneous or heterogeneous hydrogenation of arenes under mild reaction conditions (75 degrees C and 4 atm). The recovered iridium nanoparticles can be reused several times without any significant loss in catalytic activity. Unprecedented total turnover numbers (TTO) of 3509 in 32 h, for arene hydrogenation by nanoparticles catalysts, have been achieved in the reduction of benzene by the [Ir(0)](n) in solventless conditions. Contrarily, the recovered Rh(0) nanoparticles show significant agglomeration into large particles with a loss of catalytic activity. The hydrogenation of arenes containing functional groups, such as anisole, by the [Ir(0)](n) nanoparticles occurs with concomitant hydrogenolysis of the C-O bond, suggesting that these nanoparticles behave as "heterogeneous catalysts" rather than "homogeneous catalysts".  相似文献   
35.
36.
袁华  喻宗源 《合成化学》1994,2(2):97-99
从邻苯二酚出发合成了两种未见文献报道的环上含有端烯丙基的冠醚化合物。这两种冠醚的结构均经元素分析、IR、 ̄1HNMR和MS所证实。两种冠醚分别与有机硅化合物聚合制备的气相色谱固定相,在分离酚类和二硝基甲苯类异构体方面具有极好的选择性。  相似文献   
37.
The surface derivatization of poly(p-phenylene terephthalamide) fiber was studied. The obtained surface-derivatized filaments were packed into a fused-silica capillary to evaluate its surface characteristics by using GC. As the stationary phase for GC the surface-derivatized fibers showed higher retention for alkanes and alkylbenzenes than that with the untreated Kevlar fiber. The improvements on the retention power and the peak shape were observed on the benzyl-modified fibrous stationary phase. The derivatized fibrous materials were also evaluated as the extraction medium in fiber-in-tube SPE, and the effect of the surface modification on the extraction power was compared to the parent fiber. The results indicated that the modified fiber possessed a higher extraction power than the untreated fiber. Based on the facts, the successful modification of the fiber surface was estimated.  相似文献   
38.
The low vapor pressure and the versatility of the physico-chemical properties of ionic liquids make them really attractive as an alternative for conventional molecular solvents. The knowledge of their physico-chemical properties (viscosity, conductivity, miscibility with organic solvents and anion-cation interactions) has appeared mandatory for better targeting their applications, although it is generally still lacking or incomplete.This work promotes capillary electrophoresis instrumentation as an integrated apparatus for measurement of viscosity, conductivity and absorbance of pure ionic liquids and ionic liquid-molecular solvent mixtures. Compared to current conventional techniques, the assets of this instrumentation for this purpose are the combined availability of a pressure delivery system, power supply, diode array absorbance detector and thermoregulation device, allowing unattended, automatic and easy operation, involving minimum sample handling. Most importantly, the required sample volume can be reduced to about 50 μL, making this protocol very cost-effective. A protocol was optimized with respect to time, sample consumption and data reliability for the determination of these physico-chemical parameters. Ionic liquids selected for method development and validation differed in the nature of their cation (butyl- and ethyl-methylimidazolium) and anion (trifluoromethanesulfonate and bis(trifluoromethanesulfonyl)imide). Various molecular solvents were mixed with these ionic liquids (acetonitrile, methanol, dimethylformamide and trifluoroethanol) and the same physico-chemical properties were determined by optimized methods. The knowledge of these data should be of great support in various application areas, including the development of new separation media for capillary electrophoresis and chromatographic techniques.  相似文献   
39.
40.
Summary A theoretical treatment is presented which considers differences between the composition of the mobile phase and solvents that are incorporated into the bonded phase via preferential sorption. Equations are derived and used to analyze retention data for various homologs chromatographed under reversed-phase conditions using alkyl bonded phases and combinations of water-methanol, water-acetonitrile and watertetrahydrofuran as mobile phases. In the case of water-methanol the surface phase and bulk mobile phase compositions are similar. However, significant differences in composition between the two phases are observed when binary combinations of water-acetonitrile and water-tetrahydrofuran are used as the cluents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号