首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
  国内免费   5篇
化学   30篇
力学   1篇
物理学   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2002年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有33条查询结果,搜索用时 203 毫秒
21.
Transparent photochromic inorganic/organic hybrid gels involving the Chemically bonded spirobenzopyran moiety have been prepared by the sol–gel reactions using tetraethoxysilane, the silanol-terminated oligomeric poly(dimethylsiloxane), and spirobenzopyrans with the alcoxysilyl groups.  相似文献   
22.
A method has been developed for the quantitative determination of fluorescence resonance energy transfer (FRET) based on the modulation of donor fluorescence upon the reversible photoconversion of a photochromic acceptor. A model system was devised, consisting of Lucifer Yellow cadaverine (LYC, donor) conjugated to the photochromic molecule, 6-nitroBIPS (1′,3′-dihydro-1′-(2-carboxyethyl)-3′,3′-dimethyl-6-nitrospiro[2H-1-benzopyran-2,2′-(2H)-indoline]). Near-ultraviolet irradiation catalyzes the conversion of the colorless spiropyran (SP) to the colored merocyanine (MC) form of 6-nitroBIPS. Only the MC form absorbs at the emission wavelengths of the donor, thereby potentiating FRET, as demonstrated by quenching of the donor. Subsequent irradiation in the visible MC absorption band reverts 6-nitroBIPS to the SP form and FRET is inactivated. The acceptor exhibited high photostability under repeated cycles of alternating UV–Vis irradiation. In this model system, the intramolecular FRET efficiency was close to 100%. The observed maximal donor quenching of 34±3% was indicative of an equilibrium determined by the high quantum efficiency of forward conversion (SP→MC) induced by near-UV irradiation and a low but finite quantum efficiency of the back reaction resulting from excitation of the MC form directly as well as indirectly (by FRET via the donor). A quantitative formalism for the photokinetic scheme was developed. Photochromic FRET (pcFRET) permits repeated, quantitative, and non-destructive FRET determinations for arbitrary relative concentrations of donor and acceptor and thus offers great potential for monitoring dynamic molecular interactions in living cells over extended observation times by fluorescence microscopy.  相似文献   
23.
A novel calix[4]arene derivative, bearing two spirobenzopyran moieties in the lower rim, can recognize lanthanide ions. Alternating irradiation with ultraviolet and visible light controls the ligand-to-metal charge transfer (LMCT) and energy transfer of the host-Eu3+ complexes. Thus, fluorescence of Eu3+ can be switched on and off through light. The system may be applied as molecular logic switches.  相似文献   
24.
A methodology for the synthesis of novel polymerisable spiropyrans with photomechanical properties suitable for subsequent copolymerisation with either vinyl or acrylate-based biomaterials is described. UV-vis spectroscopic characterisation of photoisomerism shows that photochromic behaviour with respect to related non-polymerisable compounds is retained and is solvent dependent. In acetone, conventional spiropyran-merocyanine photochromism is observed for nitro-spiropyran derivatives, whereas in dichloromethane both nitro-spiropyrans and spiropyrans isomerise to merocyanines which rapidly form H-aggregates. The monomers were designed such that an alkyl spacer of variable length, both electronically and sterically, separates the polymerisable moiety from the photochromic core and allows steric aspects of the resulting photomechanical behaviour to be explored.  相似文献   
25.
Mechanochemically responsive (MCR) polymers have been synthesized by incorporating mechanophores – molecules whose chemical reactions are triggered by mechanical force – into conventional polymer networks. Deformation of the MCR polymers applies force on the mechanophores and triggers their reactions, which manifest as phenomena such as changing colors, varying fluorescence and releasing molecules. While the activation of most existing MCR polymers requires irreversible plastic deformation or fracture of the polymers, we covalently coupled mechanophores into the backbone chains of elastomer networks, achieving MCR elastomers that can be repeatedly activated over multiple cycles of large and reversible deformations. This paper reports a microphysical model of MCR elastomers, which quantitatively captures the interplay between the macroscopic deformation of the MCR elastomers and the reversible activation of mechanophores on polymer chains with non-uniform lengths. Our model consistently predicts both the stress–strain behaviors and the color or fluorescence variation of the MCR elastomers under large deformations. We quantitatively explain that MCR elastomers with time-independent stress–strain behaviors can give time-dependent variation of color or fluorescence due to the kinetics of mechanophore activation and that MCR elastomers with different chain-length distributions can exhibit similar stress–strain behaviors but very different colors or fluorescence. Implementing the model into ABAQUS subroutine further demonstrates our model's capability in guiding the design of MCR elastomeric devices for applications such as large-strain imaging and color and fluorescence displays.  相似文献   
26.
A rationally designed, pyrene-spiropyran hybrid Ca2+ sensor (Py-1) with enhanced fluorescence intensity compared to a standalone spiropyran analogue is presented. Importantly, Py-1 retains the characteristic red emission profile of the spiropyran, while fibre-based photostability studies show the sensor is stable after multiple cycles of photoswitching, without any sign of photodegradation. Such properties are of real advantage for cell-based sensing applications. An interesting observation is that, Py-1 presents with two excitation options; direct green excitation (532 nm) of the photoswitch for a red emission, and UV excitation (344 nm) of the component pyrene, which gives rise to distinct blue and red emissions. This proof-of-concept hybrid sensing system presents as a more general approach to brighter spiropyran-based sensors.  相似文献   
27.
以N,N'-二环己基碳二亚胺/4-二甲氨基吡啶(DCC/DMAP)为催化体系,在四氢呋喃溶剂中,常温下1'-(3-羧乙基)-3',3'-二甲基-6-硝基螺[吲哚啉-2,2[2H]吲哚啉苯并吡喃](SPCOOH)与羟丙基纤维素(HPC)发生酯化反应,合成了螺吡喃羟丙基纤维素SP-HPC.通过改变SPCOOH与HPC的重量比,可以制备含有不同螺吡喃(SP)取代度(DSsp)的SP-HPC.当SPCOOH/HPC为1.5时,DSsp达到最大值1.08.SP-HPC溶解在THF中,经紫外光照射后,闭环的SP逐渐开环转变为部花菁式(MC)大共轭结构,溶液由无色逐渐变为深紫色;当溶液又置于完全黑暗环境时,开环的MC又逐渐闭环回复到SP形式,溶液又变为无色.溶液中的SP-HPC显示了快速可逆的紫外光响应特性.由于SP基团的疏水性,使得SP-HPC在水溶液中自组装为球形胶束.SP-HPC胶束显示了光响应性,闭环形式的SP吸收紫外光转变为开环形式MC,MC的大共轭结构导致基团间发生更紧密地堆叠,促使球形胶束收缩.SP-HPC固体膜显示了可逆的紫外光响应性,但是MC转化为SP的光响应速度比由SP吸收能量转化为MC的速度慢得多.  相似文献   
28.
The phenylazo moiety and its donor‐ and acceptor‐substituted derivatives are studied as effective auxochromes to improve their sensitivity and resolution for distinguishing between the spiro (SP; OFF) and mero (ON) forms in molecular photoswitching applications. Thus, 13 azospiropyran derivatives were synthesized and their spectroscopic and photokinetic behaviors were studied. The quality of photochromic reactions of the synthesized photochromic compounds were compared using a dose–response model. Interestingly, by replacing the nitro group in 6‐nitrospiropyran (ε = 0.42 × 104 M?1 cm?1) with a simple phenylazo moiety, the SP form is still colorless and the color intensity of the merocyanine (MC) form is improved desirably by extending the conjugation length ( 1a , ε = 1.35 × 104 M?1 cm?1). The presence of a hydrophilic OH group or a CH3 group at the para position of phenylazo moiety revealed more or less the same photochromic properties as 1a . The OCH3 group substituted at position 6 of the phenylazo moiety at the para position of the azobenzene moiety effectively increased the photochromic properties with the maximum k‐value for SP to MC switching. Meanwhile, Cl, Br, COOH, and NO2 groups at the para position of the azobenzene moiety revealed the reduction in photochromic properties compared to 1a .  相似文献   
29.
In the past decades, numerous electrochemical sensors based on exogenous electroactive substance have been reported. Due to non-specific interaction between the redox mediator and the target, the instability caused by false signal may not be avoided. To address this issue, in this paper, a new electrochemical sensor based on spiropyran skeleton, namely SPOSi, was designed for specific electrochemical response to fluoride ions (F). The breakage of Si–O induced by F based on the specific nucleophilic substitution reaction between F and silica would directly produce a hydroquinone structure for electrochemical signal generation. To improve the sensitivity, SPOSi probe was assembled on the single-walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE) through the π–π conjugating interaction. This electrode was successfully applied to monitor F with a detection limit of 8.3 × 10−8 M. Compared with the conventional F ion selected electrode (ISE) which utilized noncovalent interaction, this method displays higher stability and a comparable sensitivity in the urine samples.  相似文献   
30.
IntroductionSince the last decade, a large number of workshave concentrated on the photochromic behavior of in-dolinospirobenzopyran dyes[1—4]. Interest in these com-pounds has been concerned with the reversibility of thetransformation between the colorl…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号