首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12788篇
  免费   612篇
  国内免费   760篇
化学   13266篇
晶体学   138篇
力学   6篇
综合类   26篇
数学   152篇
物理学   572篇
  2023年   98篇
  2022年   257篇
  2021年   297篇
  2020年   421篇
  2019年   337篇
  2018年   281篇
  2017年   272篇
  2016年   365篇
  2015年   263篇
  2014年   333篇
  2013年   750篇
  2012年   1321篇
  2011年   505篇
  2010年   445篇
  2009年   622篇
  2008年   700篇
  2007年   851篇
  2006年   654篇
  2005年   604篇
  2004年   590篇
  2003年   495篇
  2002年   402篇
  2001年   355篇
  2000年   352篇
  1999年   333篇
  1998年   288篇
  1997年   284篇
  1996年   307篇
  1995年   311篇
  1994年   210篇
  1993年   182篇
  1992年   152篇
  1991年   102篇
  1990年   62篇
  1989年   49篇
  1988年   51篇
  1987年   42篇
  1986年   37篇
  1985年   29篇
  1984年   31篇
  1983年   12篇
  1982年   26篇
  1981年   14篇
  1980年   17篇
  1979年   12篇
  1978年   7篇
  1977年   7篇
  1975年   4篇
  1974年   3篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
The complexes of glycine, -alanine, and -alanine with (S)-[N-(N-benzylprolyl)amino] benzophenone formed by Ni(II) and Cu(II) ions and Schiff bases enter into different nucleophilic and electrophilic reactions with the formation of diastereoisomeric complexes which decompose into proteinogenic and nonproteinogenic L-amino acids with a high chemical yield and elevated optical purity (70–90%). Optically pure amino acids can be obtained from diastereoisomerically pure complexes after the complexes are separated by recrystallization of the mixture of diastereoisomeric complexes formed. A new type of interphase catalysts of C-alkylation of achiral Schiff bases was proposed. The catalysts are positively charged Ni(II) and Cu(II) complexes of Schiff bases of chiral diamines. In some cases, these complexes have a higher activity and capacity to execute asymmetric alkylation than traditional chiral interphase catalysts based on cinchonidine.Based on materials in the section report by Yu. N. Belokon' to the 7th European Symposium on Organic Chemistry, ESOC-7.A. N. Nesmeyanov Institute of Organoelemental Compounds, Russian Academy of Sciences, 117813 Moscow. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 5, pp. 1106–1127, May, 1992.  相似文献   
52.
The X-ray crystal structures of a series of lithium quinolates – lithium 8-hydroxyquinolinate (Liq), lithium 2-methyl-8-hydroxyquinolinate (MeLiq), and 2-phenyl-8-hydroxquinolinate (PhLiq), are compared. The substitution at the 2-position of the 8-hydroxyquinoline ligand has significant impact on the aggregation of the lithium complex in the crystalline state. Liq and MeLiq molecules crystallize as hexamers, whereas PhLiq crystallizes as a tetramer. The possible influence of crystal-packing forces on the preferred cluster structure was probed using density functional theory calculations on a systematically varied set of Liq, MeLiq, and PhLiq clusters. For Liq and MeLiq, the observed structures match the most stable computed structures. In the PhLiq case, the observed tetrameric structure is computed to be less stable (+1.2 kcal/mol/monomer) than the lowest energy structure, a hexamer. In this case, solid-state effects probably outweigh small differences in cluster stability.  相似文献   
53.
Binuclear RhIII and RuII complexes of the [M1-CN-M2]+BF 4 (M1 and/or M2 are (5-Cp)(3-C3H5)Rh and (6-C6H6)(3-C3H5)Ru) type, heteronuclear organometallic compound (5-Cp)(3-C3H5)RhCNPd(3-C3H5)Cl, and mononuclear RhIII and RuII complexes [(3-C3H5)LM(MeCN)]+ BF4 (M = Rh, L = 5-Cp; M = Ru, L = 6-C6H6) were synthesized. An electrochemical study of these compounds in solutions demonstrates that the bond between the bridged CN ligand and the metal atoms is rather strong, and there is no dissociation into mononuclear fragments in solutions. The kinetics of the reaction of [(5-Cp)(3-C3H5)Rh(MeCN)]+ BF4 with halide ions was studied by electrochemical methods. The ligand exchange proceeds by a bimolecular dissociative-exchange mechanism.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 968–973, May, 1995.  相似文献   
54.
We discuss the impact of density functional electronic structure calculations for understanding the organometallic chemistry of transition metal (TM) surface complexes and clusters. Examples will cover three types of systems, mainly of interest in the context of heterogeneous catalysis: (i) supported carbonyl complexes of rhenium on MgO and of rhodium in zeolites, (ii) TM clusters with CO ligands and adsorbates, and (iii) metal clusters exhibiting chemical bonds with atomic carbon. The first group of case studies promotes the concept that surface groups of oxide supports are bonded to TM complexes in the same way as common (poly-dentate) ligands are bonded in coordination compounds. The second group of examples demonstrates various “ligand effects” of TM clusters. Finally, we illustrate how carbido centers stabilize TM clusters and modify the propensity for adsorption at the surface of such clusters.  相似文献   
55.
The v(OH) frequency shifts of phenol and the vR resonance components of these shifts in the IR spectra of phenol H-complexes with ethylene derivatives containing various substituents including organosilicon, organogermanium, and organotin groups have been studied. The relationship between v and vR and the values that characterize the influence of substituents on the effective charges of the double bonded carbon atoms was established; the latter values have been calculated previously usingab initio quantum chemical methods. The effective charges for the compounds with organoelemental substituents have been calculated. It has been elucidated that of the two types of possible interactions, charge controlled and orbital controlled, occurring in the formation of a complex of a hard acid, phenol, with the studied ethylene derivatives, the former is predominant.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1383–1387, August, 1993.  相似文献   
56.
The reactions of [RuHCl(CO)(PPh3)3] and [(C6H6)RuCl2]2 with 2-benzoylpyridine have been examined, and two novel ruthenium(II) complexes – [RuCl(CO)(PPh3)2(C5H4NCOO)] and [RuCl2(C12H9NO)2] – have been obtained. The compounds have been studied by IR and UV–Vis spectroscopy, and X-ray crystallography. The molecular orbital diagrams of the complexes have been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the compounds have been calculated with the time-dependent DFT method, and the UV–Vis spectra of the compounds have been discussed on this basis.  相似文献   
57.
Crystal and molecular structures of the planar neutral ligand, C26H16N8, and the four isomorphous five-coordinated metal complexes, [M(C26H16N8)(H2O)], M = Mn(II), Co(II), Cu(II), Zn(II), have been determined from three-dimensional X-ray diffraction data. The free ligand hpH2, C26H16N8, belongs to the P 21/c space group with Z=2, a=4.142(3), b=23.736(6), c=10.338(3) Ä, β=94.66(6)°. The metal complexes monohydrate Mhp-H2O all belong to the orthorhombic Pcab space group with Z=8. The dimensions are roughly 8.8×19.3×23.7 Å3. In each structure, the macrocyclic ligand has an almost planar conformation which differs from the saddle shaped ligand hydrate (hpH2·H2O) and the nickel complex [Nihp]5. The distances from the center of the macrocyclic ring to the nitrogen atom of the free ligand are 1.907(6) and 2.245(6)Å. The coordination geometry in these four complexes is square pyramidal with a water molecule as an axial ligand. The bond distances of M(II)-O(H2O), M(II)-N1 (imine), M(II)-N3 (pyridine) are: 2.19(1), 2.00(2), 2.27(2)Å respectively for the manganese complex; 2.08(1), 1.97(1), 2.23(1)Å for the cobalt complex; 2.33(1), 1.92(3), 2.18(1)Å for the copper complex; 2.110(5), 1.964(6), 2.252(6)Å for the zinc complex. The variation of metal-ligand distances can be correlated to the metal d orbital occupancy. A comparison with similar ligands will be presented.  相似文献   
58.
Summary. Equilibrium constants and molar extinction coefficients for 1:1 charge-transfer complexes between 2-hydroxyaniline (HA), 5-chloro-2-hydroxyaniline (CHA), and 4-bromo-2,6-dimethylaniline (BMA) as donors and iodine, as a typical σ-acceptor were determined spectrophotometrically in chloroform, dichloromethane, and carbontetrachloride solutions. Spectral characteristics and formation constants are discussed in terms of donor molecular structure and solvent polarity. The stoichiometry of the complexes was established to be 1:1. For this purpose, optical data were subjected to the form of the Rose-Drago equation for 1:1 equilibria. Electronic absorption spectra of the studied anilines were measured in different solvents. Spectral data were reported and band maxima were assigned to the appropriate molecular orbital transitions (π–π* and n–π* electronic transition). Solvent effects on the electronic transitions were discussed. Optimized geometry of the studied anilines was obtained at B3LYP/6-31 + G(d). The effect of the electronic factors of the substituents on the geometrical parameters of the ring has been explored. Geometrical values of the ring deviate from the regular hexagonal ring. Intramolecular H-bonds in HA and CHA have been computed at B3LYP/6-31 + G(d) and MP2/6-31 + G(d) levels. The H-bonding distance was calculated to be 2.105 ? in HA and 2.127 ? in CHA. Abstracted from her M.Sc. thesis  相似文献   
59.
The role of ligands in the regulation of the catalytic activity of Ni-complexes (Ni(acac)2) in green process-selective ethylbenzene oxidation with O2 into α-phenyl ethyl hydroperoxide is considered in this article. The dual function of phenol (PhOH) included in the coordination sphere of the nickel complex as an antioxidant or catalyst depends on the ligand environment of the metal. The role of intermolecular H-bonds and supramolecular structures (AFM method) in the mechanisms of selective catalysis by nickel complexes in chemical and biological oxidation reactions is analyzed.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号