This paper reports how pyrite films were prepared by thermal
sulfurization of magnetron sputtered iron films and characterized by
x-ray absorption near edge structure spectra and x-ray photoelectron
spectroscopy on a 4B9B beam line at the Beijing Synchrotron Radiation
Facility. The band gap of the pyrite agrees well with the optical
band gap obtained by a spectrophotometer. The octahedral symmetry of
pyrite leads to the splitting of the d orbit into t_{\rm 2g} and
e_{\rm g} levels. The high spin and low spin states were analysed
through the difference of electron exchange interaction and the orbital
crystal field. Only when the crystal field splitting is higher than
1.5 eV, the two weak peaks above the white lines can appear, and this
was approved by experiments in the present work. 相似文献
To address the discrepancy between carrier collection and light absorption of organic solar cells caused by the limited carrier mobility and optical absorption coefficient for the normally employed organic photoactive layers, a light management structure composed of a front indium tin oxide(ITO) nanograting and ultrathin Al layer inserted in between the photoactive layer and the electron transport layer(ETL) is introduced. Owing to the antireflection and light scattering induced by the ITO nanograting and the suppression of light absorption in the ETL by the inserted Al layer, the light absorption of the photoactive layer is significantly enhanced in a spectral range from 400 nm to 650 nm that also covers the main energy region of solar irradiation for the normally employed active materials such as the P3HT:PC_(61) BM blend. The simulation results indicate that comparing with the control device with a planar configuration of ITO/PEDOT:PSS/P3HT:PC_(61) BM(80-nm thick)/Zn O/Al, the short-circuit current density and power conversion efficiency of the optimized light management structure can be improved by 32.86% and 34.46%. Moreover, good omnidirectional light management is observed for the proposed device structure. Owing to the fact that the light management structure possesses the simple structure and excellent performance, the exploration of such a structure can be believed to be significant in fabricating the thin film-based optoelectronic devices. 相似文献
CdCl2 treatment is crucial in the fabrication of highly efficient CdS/CdTe thin-film solar cells. This study reports a comprehensive analysis of thermal evaporated CdS/CdTe thin-film solar cells when the CdTe absorber layer is CdCl2 annealed at temperatures from 340 to 440 °C. Samples were characterized for structural, optical, morphological and electrical properties. The films annealed at 400 °C showed better crystallinity with a cubic zinc blende structure having large grains. Higher refractive index, optical conductivity, and absorption coefficient were recorded for the CdTe films annealed at 400 °C with CdCl2. Optimum photoactive properties for CdS/CdTe thin-film solar cells were also obtained when samples were annealed at 400 °C for 20 min with CdCl2, and the best device exhibited VOC of 668.4 mV, JSC of 13.6 mA cm−2, FF of 53.9% and an efficiency of 4.9%. 相似文献
In this study, metal‐assisted etching (MAE) with nitric acid (HNO3) as a hole injecting agent has been employed to texture multi‐crystalline silicon wafers. It was previously proven that addition of HNO3 enabled control of surface texturing so as to form nano‐cone shaped structures rather than nanowires. The process parameters optimized for optically efficient texturing have been applied to multi‐crystalline wafers. Fabrication of p‐type Al:BSF cells have been carried out on textured samples with thermal SiO2/PECVD‐SiNx stack passivation and screen printed metallization. Firing process has been optimized in order to obtain the best contact formation. Finally, jsc enhancement of 0.9 mA/cm2 and 0.6% absolute increase in the efficiency have been achieved. This proves that the optimized MAE texture process can be successfully used in multi‐crystalline wafer texturing with standard passivation methods.
Cancer immunotherapy aims at stimulating the immune system to react against cancer stealth capabilities. It consists of repeatedly injecting small doses of a tumor-associated molecule one wants the immune system to recognize, until a consistent immune response directed against the tumor cells is observed.
We have applied the theory of optimal control to the problem of finding the optimal schedule of injections of an immunotherapeutic agent against cancer. The method employed works for a general ODE system and can be applied to find the optimal protocol in a variety of clinical problems where the kinetics of the drug or treatment and its influence on the normal physiologic functions have been described by a mathematical model.
We show that the choice of the cost function has dramatic effects on the kind of solution the optimization algorithm is able to find. This provides evidence that a careful ODE model and optimization schema must be designed by mathematicians and clinicians using their proper different perspectives. 相似文献