首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   10篇
  国内免费   3篇
化学   34篇
力学   1篇
物理学   170篇
  2023年   4篇
  2022年   8篇
  2021年   26篇
  2020年   18篇
  2019年   2篇
  2018年   14篇
  2017年   12篇
  2016年   15篇
  2015年   1篇
  2014年   20篇
  2013年   7篇
  2012年   10篇
  2011年   1篇
  2010年   7篇
  2009年   5篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有205条查询结果,搜索用时 0 毫秒
201.
Soltani A  Prokop AF  Vaezy S 《Ultrasonics》2008,48(2):109-116
Several experimental studies have demonstrated that ultrasound (US) can accelerate enzymatic fibrinolysis and this effect is further enhanced in the presence of ultrasound contrast agents (UCA). Although UCA have been shown to be safe when administered to ischemic stroke patients, safety information of these agents in the thrombolysis setting is limited. Therefore, in this study we investigated potential adverse effects of acoustic cavitation generated by UCA on alteplase (t-PA), the drug used for treatment of ischemic stroke patients. A volume of 0.9 mL of alteplase was dispensed into a custom-made polyester sample tube. For treatments in the presence or absence of cavitation either 0.1 mL Optison or phosphate buffer saline was combined with alteplase. Three independent samples of each treatment group were exposed to ultrasound of 2 MHz frequency at three different peak negative acoustic pressures of 0.5, 1.7, and 3.5 MPa for a duration of 60 min. All treatments were carried out in a cavitation detection system which was used to insonify the samples and record acoustic emissions generated within the sample. After ultrasound exposure, the treated samples and three untreated drug samples were tested for their enzymatic activity using a chromogenic substrate. The insonified samples containing Optison demonstrated cavitational activity proportional to acoustic pressure. No significant cavitation activity was observed in the absence of Optison. Enzymatic activity of alteplase in both insonified groups was comparable to that in the control group. These tests demonstrated that exposure of alteplase to 60 min of 2 MHz ultrasound at acoustic pressures ranging from 0.5 MPa to 3.5 MPa, in the presence or absence of Optison had no adverse effects on the stability of this therapeutic compound.  相似文献   
202.
Power ultrasonic vibration was applied to the solidification of calcium ferrite (CF) melt in this study. The results indicated that power ultrasound can promote the formation of CF by accelerating the solidification process. Ultrasonic vibration greatly refined the CF grains, resulting the grain size decreased from 1893 to 437 μm. Meanwhile, ultrasonic vibration significantly enhanced the compressive strength, reduced the reduction time and improved the reducibility of CF slags. With ultrasonic treatment, the ultimate compressive strength of samples increased from 37.5 to 67.8 MPa, and the reduction time decreased from 225 to 136 min.  相似文献   
203.
In the field of sonochemistry, many processes are made possible by the generation of cavitation. This article is about closed loop control of ultrasound assisted processes with the aim of controlling the intensity of cavitation-based sonochemical processes. This is the basis for a new research field which the authors call “sonomechatronics”. In order to apply closed loop control, a so called self-sensing technique is applied, which uses the ultrasound transducer’s electrical signals to gain information about cavitation activity. Experiments are conducted to find out if this self-sensing technique is capable of determining the state and intensity of acoustic cavitation. A distinct frequency component in the transducer’s current signal is found to be a good indicator for the onset and termination of transient cavitation. Measurements show that, depending on the boundary conditions, the onset and termination of transient cavitation occur at different thresholds, with the onset occurring at a higher value in most cases. This known hysteresis effect offers the additional possibility of achieving an energetic optimization by controlling cavitation generation.Using the cavitation indicator for the implementation of a double set point closed loop control, the mean driving current was reduced by approximately 15% compared to the value needed to exceed the transient cavitation threshold. The results presented show a great potential for the field of sonomechatronics. Nevertheless, further investigations are necessary in order to design application-specific sonomechatronic processes.  相似文献   
204.
In the present study, experiments of membraneless alkaline sono-electrolysis are combined to a mathematical model describing the performance of a sono-electrolyzer based on the electrochemical resistances and overpotentials (activation, Ohmic and concentration) and the oscillation of the acoustic cavitation bubble, and its related sono-physical and sonochemical effects, as a single unit and within population. The study aims to elucidate the mechanism of action of acoustic cavitation when coupled to alkaline electrolysis, using a membraneless H-cell configuration and indirect continuous sonication (40 kHz, 60 We). The calorimetric characterization constituted the bridge between experimental results and the numerical and simulation approach, while the quantification of the rate of produced hydrogen both experimentally and numerically highlighted the absence of the contribution of sonochemistry, and explained the role of ultrasounds by the action of shockwaves and microjets. Finally, the energetic sono-physical approach allowed an estimation of the predominance of the shockwaves and microjets effects according to the bubble size distribution within the population corresponding to the acoustic conditions of the study. The resulting macroscopic effect in sono-electrolysis process has been assessed considering the induced degassing. A reduction in the fraction of electrodes’ coverage by bubbles from 76% to 42% has been recorded, corresponding to a decrease of 7.2% in Ohmic resistance and 62.35% in bubble resistance.  相似文献   
205.
In this study, a sonochemical route for the preparation of a new Hf-MIL-140A metal–organic framework from a mixture of UiO-66/MIL-140A is presented. The sonochemical synthesis route not only allows the phase-pure MIL-140A structure to be obtained but also induces structural defects in the MIL-140A structure. The synergic effect between the sonochemical irradiation and the presence of a highly acidic environment results in the generation of slit-like defects in the crystal structure, which increases specific surface area and pore volume. The BET-specific surface area in the case of sonochemically derived Zr-MIL-140A reaches 653.3 m2/g, which is 1.5 times higher than that obtained during conventional synthesis. The developed Hf-MIL-140A structure is isostructural to Zr-MIL-140A, which was confirmed by synchrotron X-ray powder diffraction (SR-XRD) and by continuous rotation electron diffraction (cRED) analysis. The obtained MOF materials have high thermal and chemical stability, which makes them promising candidates for applications such as gas adsorption, radioactive waste removal, catalysis, and drug delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号