首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   10篇
  国内免费   3篇
化学   34篇
力学   1篇
物理学   170篇
  2023年   4篇
  2022年   8篇
  2021年   26篇
  2020年   18篇
  2019年   2篇
  2018年   14篇
  2017年   12篇
  2016年   15篇
  2015年   1篇
  2014年   20篇
  2013年   7篇
  2012年   10篇
  2011年   1篇
  2010年   7篇
  2009年   5篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有205条查询结果,搜索用时 31 毫秒
21.
22.
Cadmium-doped zinc oxide nanocrystals in the quantum confinement region have been firstly synthesized by a fast and facile sonochemical method.The alloyed structure of the nanocrystals is confirmed by X-ray diffraction, transmission electron microscopy, and infrared analysis.With the increase of cadmium to zinc molar ratio from 0 to 2.0, the crystallite sizes of the samples decrease from 5.1 nm to 2.6 nm, and the band gaps of the samples show a red shift then a blue shift, and a red shift again.The variations of band gaps of the samples can be interpreted by the crystallite size and the composition.It is found that both the non-thermal equilibrium environment established in the sonochemical reaction and the coordination ability of triethylene glycol solvent play crucial roles in the current preparation.  相似文献   
23.
This review presents recent advances in multi-component electrocatalysts for low-temperature fuel cells (FCs) synthesized via sonochemical reactions. As a feasible approach to develop novel electrocatalysts that can overcome the many problems of the prevailing Pt electrocatalysts, Pt- or Pd-based alloy and core–shell M@Pt nanoparticles (NPs) have been pursued. Synthesizing NPs with desirable properties often turn out to be challenging. Sonochemistry generates extreme conditions via acoustic cavitation, which have been utilized in the syntheses of various Pt and Pd NPs and Pt- and Pd-based alloy NPs. Especially, it has been reported that several M@Pt core–shell NPs can be synthesized by sonochemistry, which is hard to achieve by other methods. The principles of sonochemistry are presented with examples. Also alloy NPs and core–shell NPs synthesized by sonochemistry and those by other methods are compared.  相似文献   
24.
The Villermaux–Dushman reaction is a widely used technique to study micromixing efficiencies with and without sonication. This paper shows that ultrasound can interfere with this reaction by sonolysis of potassium iodide, which is excessively available in the Villermaux–Dushman solution, into triiodide ions. Some corrective actions, to minimize this interference, are proposed. Furthermore, the effect of ultrasonic frequency, power dissipation, probe tip surface area and stirring speed on micromixing were investigated. The power and frequency seem to have a significant impact on micromixing in contrast to the stirring speed and probe tip surface area. Best micromixing was observed with a 24 kHz probe and high power intensities. Experiments with different frequencies but a constant power intensity, emitter surface, stirring speed, cavitation bubble type and reactor design showed best micromixing for the highest frequency of 1135 kHz. Finally, these results were used to test the power law model of Rahimi et al. This model was not able to predict micromixing accurately and the addition of the frequency, as an additional parameter, was needed to improve the simulations.  相似文献   
25.
超声空化与超声医学   总被引:13,自引:0,他引:13       下载免费PDF全文
冯若  李化茂 《应用声学》2000,19(1):35-38
随着超声技术应用广泛而迅速的发展,整整一个世纪来,超声空化成了经久不衰的研究课题,特别近10年来,超声空化成了多种学科的基础研究热点。本扼要地介绍了起声空化的最新研究进展,以及超声空化与超声医学发展的密切关系。  相似文献   
26.
Despite the increasing use of high frequency ultrasound in heterogeneous reactions, knowledge about the spatial distribution of cavitation bubbles at the irradiated solid surface is still lacking. This gap hinders controllable surface sonoreactions. Here we present an optimization study of the cavitation bubble distribution at a solid sample using sonoluminescence and sonochemiluminescence imaging. The experiments were performed at three ultrasound frequencies, namely 580, 860 and 1142 kHz. We found that position and orientation of the sample to the transducer, as well as its material properties influence the distribution of active cavitation bubbles at the sample surface in the reactor. The reason is a significant modification of the acoustic field due to reflections and absorption of the ultrasonic wave by the solid. This is retraced by numerical simulations employing the Finite Element Method, yielding reasonable agreement of luminescent zones and high acoustic pressure amplitudes in 2D simulations. A homogeneous coverage of the test sample surface with cavitation is finally reached at nearly vertical inclination with respect to the incident wave.  相似文献   
27.
Copper tungstate (CuWO4) crystals were synthesized by the sonochemistry (SC) method, and then, heat treated in a conventional furnace at different temperatures for 1 h. The structural evolution, growth mechanism and photoluminescence (PL) properties of these crystals were thoroughly investigated. X-ray diffraction patterns, micro-Raman spectra and Fourier transformed infrared spectra indicated that crystals heat treated and 100 °C and 200 °C have water molecules in their lattice (copper tungstate dihydrate (CuWO4·2H2O) with monoclinic structure), when the crystals are calcinated at 300 °C have the presence of two phase (CuWO4·2H2O and CuWO4), while the others heat treated at 400 °C and 500 °C have a single CuWO4 triclinic structure. Field emission scanning electron microscopy revealed a change in the morphological features of these crystals with the increase of the heat treatment temperature. Transmission electron microscopy (TEM), high resolution-TEM images and selected area electron diffraction were employed to examine the shape, size and structure of these crystals. Ultraviolet–Visible spectra evidenced a decrease of band gap values with the increase of the temperature, which were correlated with the reduction of intermediary energy levels within the band gap. The intense photoluminescence (PL) emission was detected for the sample heat treat at 300 °C for 1 h, which have a mixture of CuWO4·2H2O and CuWO4 phases. Therefore, there is a synergic effect between the intermediary energy levels arising from these two phases during the electronic transitions responsible for PL emissions.  相似文献   
28.
There is a growing demand for eco-friendly/non-toxic colorants, specifically for health sensitive applications such as coloration of food and dyeing of child textile/leather garments. Recently, dyes derived from natural sources for these applications have emerged as an important alternative to potentially harmful synthetic dyes and pose need for suitable effective extraction methodologies. The present paper focus on the influence of process parameters for ultrasound assisted leaching of coloring matter from plant materials. In the present work, extraction of natural dye from beetroot using ultrasound has been studied and compared with static/magnetic stirring as a control process at 45 °C. The influence of process parameters on the extraction efficiency such as ultrasonic output power, time, pulse mode, effect of solvent system and amount of beetroot has been studied. The use of ultrasound is found to have significant improvement in the extraction efficiency of colorant obtained from beetroot. Based on the experiments it has been found that a mixture of 1:1 ethanol–water with 80 W ultrasonic power for 3 h contact time provided better yield and extraction efficiency. Pulse mode operation may be useful in reducing electrical energy consumption in the extraction process. The effect of the amount of beetroot used in relation to extraction efficiency has also been studied. Two-stage extraction has been studied and found to be beneficial for improving the yield for higher amounts of beetroot. Significant 8% enhancement in % yield of colorant has been achieved with ultrasound, 80 W as compared to MS process both using 1:1 ethanol–water. The coloring ability of extracted beet dye has been tested on substrates such as leather and paper and found to be suitable for dyeing. Ultrasound is also found to be beneficial in natural dyeing of leather with improved rate of exhaustion. Both the dyed substrates have better color values for ultrasonic beet extract as inferred from reflectance measurement. Therefore, the present study clearly offers efficient extraction methodology from natural dye resources such as beetroot with ultrasound even dispensing with external heating. Thereby, also making eco-friendly non-toxic dyeing of fibrous substances a potential viable option.  相似文献   
29.
Cavitation can be effectively used for intensification of chemical reactions due to the production of free radicals and conditions of high temperatures and pressures locally. In the present work, use of cavitation for the intensification of the synthesis of sulfone has been explored. The oxidation of thioether or sulfide to synthesize corresponding sulfone with 30% H2O2 as an oxidant was studied under acoustic cavitation and the results have been compared with the conventional approach based on the use of mechanical agitation. The aim has been also to optimize the different operating conditions viz. molar ratio of reactants to the oxidizing agent, type of the catalyst as well as its concentration, type of the solvent and the reactant concentration, so as to maximize the degree of intensification. It was observed that under the optimized conditions of sonication, the yield of sulfone was about five to six times higher as compared to the conventional approach of using mechanical agitation only.  相似文献   
30.
Graphene oxide-[Zn2(oba)2(bpfb)]·(DMF)5 metal-organic framework nanocomposite (GO-TMU-23; H2oba = 4,4′-oxybisbenzoic acid, bpfb = N,N′-bis-(4-pyridylformamide)-1,4-benzenediamine, DMF = N,N-dimethylformamide) is prepared through a simple and large-scale sonochemical preparation method at room temperature. The obtained nanocomposite is characterized by Field Emission Scanning Electron Microscopy (FE-SEM), powder X-ray diffraction (PXRD) and FT-IR spectroscopy. Additionally, the absorption ability of GO-TMU-23 nanocomposite toward cationic dye methylene blue was also performed. Significantly, GO-TMU-23 nanocomposite exhibits remarkably accelerated adsorption kinetics for methylene blue in comparison with the parent materials. The adsorption process shows that 90% of the dye has been removed and the equilibrium status has been reached in 2 min by using the nanocomposites as the adsorbent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号