首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   10篇
  国内免费   3篇
化学   34篇
力学   1篇
物理学   170篇
  2023年   4篇
  2022年   8篇
  2021年   26篇
  2020年   18篇
  2019年   2篇
  2018年   14篇
  2017年   12篇
  2016年   15篇
  2015年   1篇
  2014年   20篇
  2013年   7篇
  2012年   10篇
  2011年   1篇
  2010年   7篇
  2009年   5篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有205条查询结果,搜索用时 0 毫秒
161.
Ionic liquids have favorable intrinsic properties that make them of interest as solvents for various chemical reactions. The same properties that make the liquids effective solvents also make them interesting liquids for studies involving sonochemistry, acoustic cavitation, and sonoluminescence. Recent interest in using ultrasound to accelerate chemical reactions conducted in ionic liquids necessitates an understanding of the effects of acoustic cavitation on these solvents. Here, we review our previous results on the effects of cavitation on some room-temperature ionic liquids, including the sonoluminescence spectra of molten salt eutectics and concentrated aqueous electrolyte solutions. In all cases, regardless of the essentially nonexistent vapor pressure of the solution atomic and small molecule emitters are observed in the spectra which arise from sonolysis of the ionic liquids.  相似文献   
162.
This letter reports on the use of frequency sweeps to probe acoustic cavitation activity generated by high-intensity focused ultrasound (HIFU). Unprecedented enhancement and quenching of HIFU cavitation activity were observed when short frequency sweep gaps were applied in negative and positive directions, respectively. It was revealed that irrespective of the frequency gap, it is the direction and frequency sweep rate that govern the cavitation activity. These effects are related to the response of bubbles generated by the starting frequency to the direction of the frequency sweep, and the influence of the sweep rate on growth and coalescence of bubbles, which in turn affects the active bubble population. These findings are relevant for the use of HIFU in chemical and therapeutic applications, where greater control of cavitation bubble population is critical.  相似文献   
163.
Copper and nickel nanoparticles were synthesized using reducing agents in the presence of direct high energy ultra-sonication. The metallic nanoparticles were decorated on various ceramic substrates (e.g. α-Al2O3, and TiO2) leading to metal reinforced ceramics with up to 45% metallic content. Different parameters, such as the amount of precursor material or the substrate, as well as the intensity of ultrasound were examined, in order to evaluate the percentage of final metallic decoration on the composite materials. All products were characterized by means of Inductively Coupled Plasma Spectroscopy in order to investigate the loading with metallic particles. X-ray Diffraction and Scanning Electron Microscopy were also used for further sample characterization. Selected samples were examined using Transmission Electron Microscopy, while finally, some of the powders synthesized, were densified by means of Spark Plasma Sintering, followed by a SEM/EDX examination and an estimation of their porosity.  相似文献   
164.
A sonochemical method has been employed for the synthesis of palladium oxide (PdO) nanoparticles deposited on silica nanoparticle. By sonochemical process, the PdO nanoparticles were doped on the surface of silica at room temperature and atmospheric pressure with short reaction time. Silica nanoparticles were used as a supporting material to suppress aggregation and thereby to increase surface area of PdO nanoparticles. Fabricated PdO-doped silica nanoparticle (PdO@SNP) was applied as a nanocatalyst for selective alcohol oxidation reaction in the presence of molecular oxygen. The PdO@SNP composite showed higher catalytic activity and selectivity than unsupported PdO nanoparticle for aerobic alcohol oxidation reaction.  相似文献   
165.
Multifunctional substrates with superhydrophobic and biocidal properties are gaining interest for a wide range of applications; however, the production of such surfaces remains challenging. Here, the sonochemical method is utilized to impart superhydrophobicity and antimicrobial properties to a polyethylene (PE) sheet. This is achieved by sonochemically depositing nanoparticles (NPs) of a hydrophobic fluoro-polymer (FP) on the PE sheets. The polymer is a flexible, transparent fluoroplastic composed of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride in the form of a powder. The NPs of polymers are generated and deposited on the surface of the PE using ultrasound irradiation. Optimizing the process results in a homogeneous distribution of 110–200 nm of NPs on the PE surface. The coated surface displays a water-contact angle of 160°, indicating excellent superhydrophobicity. This superhydrophobic surface shows high stability under outdoor conditions for two months, which is essential for various applications. In addition, metal-oxide nanoparticles (CuO or ZnO NPs) were integrated into the polymer coating to achieve antibacterial properties and increase the surface roughness. The metal oxides were also deposited sonochemically. The antibacterial activity of the FP@ZnO and FP@CuO PE composites was tested against the bacterium Staphylococcus aureus, and the results show that the FP@CuO PE can effectively eradicate the bacteria. This study highlights the feasibility of using the sonochemical method to deposit two separate functions, opening up new possibilities for producing “smart” novel surfaces.  相似文献   
166.
A novel polymeric, polyacrylonitrile (PAN) nanofibers containing ferroelectric and semiconducting antimony sulfoiodide (SbSI) have been made by electrospinning. SbSI nanowires, used as the filler, have been prepared sonochemically from antimony sulphide (Sb2S3) and antimony tri-iodide (SbI3) for the first time. Nanocrystalline SbSI has been fabricated in ethanol under ultrasonic irradiation (20 kHz, 565 W/cm2) at 323 K within 2 h. The products have been characterized by using techniques such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, high-resolution transmission electron microscopy, selected area electron diffraction and optical diffuse reflection as well as transmission spectroscopy. The good quality of the nanocrystals and their dispersion in the nanofiber’s volume is important because this material is attractive for nanogenerators due to its ferroelectric and piezoelectric properties. The amplitude of the voltage pulse, generated under shock pressure of 3.0 MPa, has reached 180 V in the prototype PAN/SbSI piezoelectric nanogenerator. The peak output voltage of about 0.2 V was measured in bending/releasing conditions with the deformation frequency of 1 Hz.  相似文献   
167.
Sonochemistry, an almost a century old technique was predominantly employed in the cleaning and extraction processes but this tool has now slowly gained tremendous attention in the synthesis of nanoparticles (NPs) where particles of sub-micron have been produced with great stability. Following this, ultrasonication techniques have been largely employed in graphene synthesis and its dispersion in various solvents which would conventionally take days and offers poor yield. Ultrasonic irradiation allows the production of thin-layered graphene oxide (GO) and reduced graphene oxide (RGO) of up to 1 nm thickness and can be produced in single layers. With ultrasonic treatment, reactions were made easy whereby graphite can be directly exfoliated to graphene layers. Oxidation to GO can also be carried out within minutes and reduction to RGO is possible without the use of any reducing agents. In addition, various geometry of graphene can be produced such as scrolled graphene, sponge or foam graphene, smooth as well as those with rough edges, each serving its own unique purpose in various applications such as supercapacitor, catalysis, biomedical, etc. In ultrasonic-assisted reaction, deposition of metal NPs on graphene was more homogeneous with custom-made patterns such as core-shell formation, discs, clusters and specific deposition at the edges of graphene sheets. Graphene derivatives with the aid of ultrasonication are the perfect catalyst for various organic reactions as well as an excellent adsorbent. Reactions which used to take hours and days were significantly reduced to minutes with exceedingly high yields. In a more recent approach, sonophotocatalysis was employed for the combined effect of sonication and photocatalysis of metal deposited graphene. The system was highly efficient in organic dye adsorption. This review provides detailed fundamental concepts of ultrasonochemistry for the synthesis of graphene, its dispersion, exfoliation as well as its functionalization, with great emphasis only based on recent publications. Necessary parameters of sonication such as frequency, power input, sonication time, type of sonication as well as temperature and dual-frequency sonication are discussed in great length to provide an overview of the resultant graphene products.  相似文献   
168.
灭多威的超声降解研究   总被引:12,自引:0,他引:12       下载免费PDF全文
研究了灭多威模拟废水在超声作用下的降解反应动力学、降解产物、降解途径、以及影响降解速率的因素等问题.结果表明,灭多威经超声作用35min,可被完全转换为无机物,其降解过程为假一级反应;浓度增加时,降解减慢;Fe  相似文献   
169.
水处理用声化学反应器研究进展   总被引:6,自引:1,他引:6       下载免费PDF全文
介绍了在水处理中采用的液哨式、清洗槽式、变幅杆式、杯式、平行板、管型等声化学反应器的研究进展和应用现状。指出要在实际水处理工程中采用超声技术,必须尽快开展高效、大批量处理或流水式连续运行的声学反应器的基础研究与应用开发。  相似文献   
170.
Sonochemical degradation of aqueous polycyclic aromatic hydrocarbons (PAHs) was found to be rapid in the absence of other dissolved compounds (k = 0.006-0.015 s-1). In the presence of 20 mg Cl-1 fulvic acid, first-order PAH degradation rate constants decreased from 2.3- to 3.7-fold. Similar results were obtained with added benzoic acid, a crude analog for fulvic acid. In natural waters, PAH degradation was almost completely inhibited. Analysis of the kinetic behavior and reaction products indicates that PAHs are most likely degraded through a radical cation mechanism. Hydroxyl radical appeared to play an insignificant role in the degradation. Inhibited degradation was probably the result of either altered cavitation processes or isolation of the PAH away from cavitation sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号