首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   10篇
  国内免费   3篇
化学   34篇
力学   1篇
物理学   170篇
  2023年   4篇
  2022年   8篇
  2021年   26篇
  2020年   18篇
  2019年   2篇
  2018年   14篇
  2017年   12篇
  2016年   15篇
  2015年   1篇
  2014年   20篇
  2013年   7篇
  2012年   10篇
  2011年   1篇
  2010年   7篇
  2009年   5篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有205条查询结果,搜索用时 15 毫秒
11.
Investigation of the cavitation activity during ultrasonic treatment of magnesium particles during nanostructuring has been performed. Cavitation activity is recorded in the continuous mode after switching the ultrasound on with the use of ICA-5DM cavitometer. It has been demonstrated that this characteristic of the cavitation zone may be varied in a wide range of constant output parameters of the generator. The speed and nature of the cavitation activity alteration depended on the concentration of Mg particles in the suspension and the properties of the medium in which the sonochemical treatment has been performed. Three stages of the cavitation area evolution can be distinguished: 1 – the initial increase in cavitation activity, 2 – reaching a maximum with a subsequent decrease, and 3 – reaching the plateau (or the repeated cycles with feedback loops of enlargement/reduction of the cavitation activity).The ultrasonically treated magnesium particles have been characterized by scanning electron microscopy, X-ray diffraction analysis and thermal analysis. Depending on the nature of the dispersed medium the particles can be characterized by the presence of magnesium hydroxide (brucite) and magnesium hydride. It is possible to reach the incorporation of magnesium hydride in the magnesium hydroxide/magnesium matrix by varying the conditions of ultrasonic treatment (duration of treatment, amplitude, dispersed medium etc.). The influence of the magnesium reactivity is also confirmed by the measurements of cavitation activity in organic dispersed media (ethanol, ethylene glycol) and their aqueous mixtures.  相似文献   
12.
Among the different properties of the hydrophobic semiconductor surfaces, self-cleaning promoted by solar illumination is probably one of the most attractive from the technological point of view. The use of sonochemistry for nanomaterials' synthesis has been recently employed for the associated shorter reaction times and efficient route for control over crystal growth and the management of the resulting material's photocatalytic properties. Moreover, the sol–gel method coupled to sonochemistry modifies the chemical environment, with reactive species such as •OH and H2O2, which yield a homogeneous synthesis. Therefore, in the following investigation, the sol–gel method was coupled to sonochemistry to synthesize a SiO2@TiO2 composite, for which the sonochemical amplitude of irradiation was varied to determine its effect on the morphology and mechanical and self-cleaning properties. SEM and AFM characterized the samples of SiO2@TiO2 composite, and while the micrographs indicate that a high ultrasonic energy results in an amorphous SiO2@TiO2 composite with a low rugosity, which was affected in the determination of the contact angle on the surface. On the other hand, FTIR analysis suggests a significant change in both SiO2-SiO and SiO2-TiO2 chemical bonds with changes in vibrations and frequency, corroborating an important influence of the sonochemical energy contribution to the hydrolysis process. Raman spectroscopy confirms the presence of an amorphous phase of silicon dioxide; however, the vibrations of TiO2 were not visible. The evaluation of hydrophobic and self-cleaning properties shows a maximum of ultrasonic energy needed to improve the contact angle and rhodamine B (RhB) removal.  相似文献   
13.
In this paper, the ultrasonic-assisted desilication technique was reported as an attractive and efficient way for the preparation of hierarchical zeolites with MFI structure type. The prepared materials were used as active catalysts for the dehydration of ethanol into diethyl ether and ethylene. For all catalysts, the selectivity to diethyl ether was ca 95% or higher up to 210 °C, with catalytic activity in the range of 40–68%. In case of desilicated zeolites, at 270–290 °C, the conversion of ethanol was full with selectivity to ethylene ca 80%. MFI-type commercial zeolite was treated with a sodium and/or tetrabutylammonium hydroxide aqueous solutions (NaOH or NaOH/TBAOH) for 30 min. In the case of the application of ultrasounds, a QSonica Q700 sonicator (60 W and 20 kHz) equipped with a “1” diameter horn was used. In all cases, desilication was performed in an ice bath in order to keep the procedure conditions at low temperature.It was indicated that the use of ultrasounds during desilication procedure caused higher extraction of silicon and aluminum, which was connected with an elevated mesoporosity in relation to the samples modified in the absence of ultrasounds. Ultrasonic-assisted treatment of MFI-type zeolite caused also an apparent formation of numerous holes inside zeolite grains, resembling the look of “swiss cheese”. Furthermore, it was indicated that the samples prepared using ultrasonic irradiation exhibited enhanced catalytic properties in the dehydration of ethanol. For instance, MFI-type zeolite treated with NaOH/TBAOH alkaline mixture containing 10 mol% of TBAOH in the presence of ultrasounds (M−10 s) demonstrated higher both conversion of ethanol (59% vs. 47%) and selectivity to diethyl ether (95% vs. 93%) in comparison with zeolite modified conventionally (M−10c).The best catalyst was zeolite ultrasonically desilicated with NaOH/TBAOH solution of 70 mol% of TBAOH (M-70s). Generally, this catalyst indicated the highest conversion of ethanol, very high selectivity to diethyl ether (94-100%) at 150-210  °C and the highest selectivity to ethylene among investigated catalysts (21%, 66% and 84%) at 230  °C, 250 oC and 270  °C.  相似文献   
14.
New biotechnological processes using microorganisms and/or enzymes to convert carbonaceous resources, either biomass or depolymerized plastics into a broad range of different bioproducts are recognized for their high potential for reduced energy consumption and reduced GHG emissions. However, the hydrophobicity, high molecular weight, chemical and structural composition of most of them hinders their biodegradation. A solution to reduce the impact of non-biodegradable polymers spread in the environment would be to make them biodegradable. Different approaches are evaluated for enhancing their biodegradation. The aim of this work is to develop and optimize the ultrasonication (US) and UV photodegradation and their combination as well as dielectric barrier discharge (DBD) plasma as pre‐treatment technologies, which change surface properties and enhance the biodegradation of plastic by surface oxidation and thus helping bacteria to dock on them. Polylactic acid (PLA) has been chosen as a model polymer to investigate its surface degradation by US, UV, and DBD plasma using surface characterization methods like X-ray Photoelectron Spectroscopy (XPS) and Confocal Laser Microscopy (CLSM), Atomic Force Microscopy (AFM) as well as FT-IR and drop contour analysis. Both US and UV affect the surface properties substantially by eliminating the oxygen content of the polymer but in a different way, while plasma oxidizes the surface.  相似文献   
15.
Ultrasound (US) has become one of the most important techniques in green chemistry and emerging technologies. Many research investigations documented the usefulness of US in a wide range of applications in food science, nanotechnology, and complementary medicine, where effective extraction of natural products is important. However, as with all novel technologies, US has advantages and limitations that require clarification for full adaptation at an industrial scale. The present review discusses recent applications of US in herbal phytochemistry with the emphasis on US effects on chemical structures of bioactive compounds extracted from herbs and their bioactivities. The impact of different US processing conditions such as frequency, intensity, duration, temperature, and pressure on the effectiveness of the extraction process and the properties of the extracted materials are also discussed. Different frequencies and intensities of US have demonstrated its potential applications in modifying, determining, and predicting the physicochemical properties of herbs and their extracts. US has important applications in nanotechnology where it supports the fabrication of inexpensive and eco-friendly herbal nanostructures, as well as acoustic-based biosensors for chemical imaging of the herbal tissues. The application of US enhances the rates of chemical processes such as hydrolysis of herbal fibers, which reduces the time and energy consumed without affecting the quality of the final products. Overall, the use of US in herbal science has great potential to create novel chemical constructions and to be used as an innovative diagnostic system in various biomedical, food, and analytical applications.  相似文献   
16.
For the first time, an efficient, simple, synthetic green protocol for the one-pot synthesis of functionalized 2-oxo-benzo[1,4]oxazines 2429 in water under ultrasound irradiation is presented. As compared to conventional methods, the present protocol avoids traditional chromatography and purification steps and furnished the target molecules in excellent yields (upto 98%) with no side products. The methodology was also demonstrated on gram scale synthesis. Moreover, functionalized 2-oxo-quinoxaline analogues 3133, another class of bio-active heterocyclic scaffolds, were also prepared using this method. For the first time, this protocol was successfully applied in the synthesis of the anticancer indole alkaloid, Cephalandole A 35.  相似文献   
17.
18.
The substantiated isolation of the antimony subiodide (Sb3I) is presented for the first time. It has been prepared using elemental Sb and I in ethanol under ultrasonic irradiation at 323 K. Its composition was characterized using X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDAX). The scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) investigations exhibit that the samples are made up of large quantity of nanoparticles with diameters smaller than 20 nm and single crystalline in nature. The interplanar spacings in Sb3I that have been determined using powder X-ray diffraction (XRD), selected area electron diffraction (SAED) and HRTEM are very similar. Surprisingly, the registered XRD patterns are identical to the one reported earlier for Sb4O5I2.  相似文献   
19.
Nanoparticles of zinc-doped maghemite were prepared using ultrasonic radiation. As a precursor, a suspension of maghemite in an alkaline aqueous solution of zinc nitrate at pH 9 was sonicated. The zinc-doped maghemite nanoparticles were investigated by X-ray diffraction, Mössbauer spectroscopy, high-resolution electron microscopy (HREM) and SQUID magnetometry. The Mössbauer measurements, which cover the temperature range 4.2 K to room temperature, were acquired in zero field and an applied field of 5 T. The results show that by using ultrasound radiation, zinc Zn2+ can substitute for Fe3+ up to a composition close to zinc ferrite (ZnFe2O4), which has a random distribution of Fe3+ ions over both A and B sublattices in the spinel structure with an inversity parameter of δ = 0.322. This leads to a maximum saturation magnetization (Ms) of 64.1 emu/g at 300 K and 73.5 emu/g at 2 K.  相似文献   
20.
The sonocatalytic degradation of EDTA (C0 = 5 10−3 M) in aqueous solutions was studied under 345 kHz (Pac = 0.25 W mL−1) ultrasound at 22–51 °C, Ar/20%O2, Ar or air, and in the presence of metallic titanium (Ti0) or core-shell Ti@TiO2 nanoparticles (NPs). Ti@TiO2 NPs have been obtained using simultaneous action of hydrothermal conditions (100–214 °C, autogenic pressure P = 1.0–19.0 bar) and 20 kHz ultrasound, called sonohydrothermal (SHT) treatment, on Ti0 NPs in pure water. Ti0 is composed of quasi-spherical particles (30–150 nm) of metallic titanium coated with a metastable titanium suboxide Ti3O. SHT treatment at 150–214 °C leads to the oxidation of Ti3O and partial oxidation of Ti0 and formation of nanocrystalline shell (10–20 nm) composed of TiO2 anatase. It was found that Ti0 NPs do not exhibit catalytic activity in the absence of ultrasound. Moreover, Ti0 NPs remain inactive under ultrasound in the absence of oxygen. However, significant acceleration of EDTA degradation was achieved during sonication in the presence of Ti0 NPs and Ar/20%O2 gas mixture. Coating of Ti0 with TiO2 nanocrystalline shell reduces sonocatalytic activity. Pristine TiO2 anatase nanoparticles do not show a sonocatalytic activity in studied system. Suggested mechanism of EDTA sonocatalytic degradation involves two reaction pathways: (i) sonochemical oxidation of EDTA by OH/HO2 radicals in solution and (ii) EDTA oxidation at the surface of Ti0 NPs in the presence of oxygen activated by cavitation event. Ultrasonic activation most probably occurs due to the local heating of Ti0/O2 species at cavitation bubble/solution interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号