首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3649篇
  免费   689篇
  国内免费   379篇
化学   4327篇
晶体学   22篇
力学   10篇
综合类   5篇
数学   7篇
物理学   346篇
  2024年   7篇
  2023年   39篇
  2022年   108篇
  2021年   128篇
  2020年   318篇
  2019年   197篇
  2018年   128篇
  2017年   122篇
  2016年   256篇
  2015年   227篇
  2014年   227篇
  2013年   299篇
  2012年   315篇
  2011年   280篇
  2010年   203篇
  2009年   246篇
  2008年   245篇
  2007年   213篇
  2006年   254篇
  2005年   184篇
  2004年   164篇
  2003年   133篇
  2002年   47篇
  2001年   39篇
  2000年   33篇
  1999年   53篇
  1998年   46篇
  1997年   36篇
  1996年   35篇
  1995年   26篇
  1994年   24篇
  1993年   12篇
  1992年   9篇
  1991年   6篇
  1990年   10篇
  1989年   5篇
  1988年   6篇
  1987年   10篇
  1986年   4篇
  1985年   3篇
  1983年   2篇
  1981年   6篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   3篇
  1971年   2篇
排序方式: 共有4717条查询结果,搜索用时 0 毫秒
51.
The sphene-type solid electrolyte with high ionic conductivity has been designed for solid-state lithium metal battery. However, the practical applications of solid electrolytes are still suffered by the low relative density and long sintering time of tens of hours with large energy consumption. Here, we introduced the spark plasma sintering technology for fabricating the sphene-type Li1.125Ta0.875Zr0.125SiO5 solid electrolyte. The dense electrolyte pellet with high relative density of ca. 97.4% and ionic conductivity of ca. 1.44×10-5 S/cm at 30℃ can be obtained by spark plasma sintering process within the extremely short time of only ca. 0.1 h. Also the solid electrolyte provides stable electrochemical window of ca. 6.0 V(vs. Li+/Li) and high electrochemical interface stability toward Li metal anode. With the enhanced interfacial contacts between electrodes and electrolyte pellet by the in-situ formed polymer electrolyte, the solid-state lithium metal battery with LiFePO4 cathode can deliver the initial discharge capacity of ca. 154 mA·h/g at 0.1 C and the reversible capacity of ca. 132 mA·h/g after 70 cycles with high Coulombic efficiency of 99.5% at 55℃. Therefore, this study demonstrates a rapid and energy efficient sintering strategy for fabricating the solid electrolyte with dense structure and high ionic conductivity that can be practically applied in solid-state lithium metal batteries with high energy densities and safeties.  相似文献   
52.
This overview describes the results of our recent study of the application of electrochemical nanotechnology to the fabrication of magnetic recording materials, interconnects in ultra-large-scale integrated (ULSI) devices, energy storage materials, and on-chip biosensors. It is important to note that electrochemical processes play significant roles in developing and fabrication such sophisticated materials and devices. In the field of magnetic recording, electrodeposition methods for preparing CoNiFe and CoFe soft magnetic thin films with a high saturation magnetic flux density were newly developed, and the significant issues for obtaining those films are highlighted. In the area of ULSI interconnects, we developed a technique using a self-assembled monolayer (SAM) for direct bonding of the interconnect layer to SiO2, and proposed a novel electroless deposition method for fabricating a diffusion barrier layer. In the field of batteries, electrodeposited SnNi alloy was proposed as a future anode material for Li batteries, and electrochemical MEMS processes were shown to be useful for fabricating micro-sized direct methanol fuel cells (DMFCs) as portable batteries for electronics applications. In the area of chemical sensors, we developed a new process for fabricating field effect transistors (FETs) modified with SAMs for on-chip biosensing applications.  相似文献   
53.
以1,3-二硫杂环戊烯-2-硒酮-4,5-二硫盐为配体与二价金属离子配位合成了4种双(1,3-二硫杂环戊烯-2-硒酮-4,5-二硫)金属配合物,研究了它们的电化学性质和UV—Vis光谱,并讨论了形成中性产物的原因。  相似文献   
54.
The oxidation of formic acid and carbon monoxide was studied at a gold electrode by a combination of electrochemistry, in situ surface-enhanced Raman spectroscopy (SERS), differential electrochemical mass spectrometry, and first-principles DFT calculations. Comparison of the SERS results and the (field-dependent) DFT calculations strongly suggests that the relevant surface-bonded intermediate during oxidation of formic acid on gold is formate HCOO- ad*. Formate reacts to form carbon dioxide via two pathways: at low potentials, with a nearby water to produce carbon dioxide and a hydronium ion; at higher potentials, with surface-bonded hydroxyl (or oxide) to give carbon dioxide and water. In the former pathway, the rate-determining step is probably related to the reaction of surface-bonded formate with water, as measurements of the reaction order imply a surface almost completely saturated with adsorbate. The potential dependence of the rate of the low-potential pathway is presumably governed by the potential dependence of formate coverage. There is no evidence for CO formation on gold during oxidation of formic acid. The oxidation of carbon monoxide must involve the carboxyhydroxyl intermediate, but SERS measurements do not reveal this intermediate during CO oxidation, most likely because of its low surface coverage, as it is formed after the rate-determining step. Based on inconclusive spectroscopic evidence for the formation of surface-bonded OH at potentials substantially below the surface oxidation region, the question whether surface-bonded carbon monoxide reacts with surface hydroxyl or with water to form carboxyhydroxyl and carbon dioxide remains open. The SERS measurements show the existence of both atop and bridge-bonded CO on gold from two distinguishable low-frequency modes that agree very well with DFT calculations.  相似文献   
55.
By electrochemical iodination of potassium 7-methyl-7,8-dicarba-nido-undecaborate and potassium 7,8-dimethyl-7,8-dicarba-nido-undecaborate, their monoiodine derivatives (extracted as tetramethylammonium salts) are synthesized. Their structure is confirmed by NMR and IR spectra and also by elemental analysis data.  相似文献   
56.
Oligothienylenevinylenes/C(60) dyads n-C and triads n-C(2) are studied by electrospray mass spectrometry. A clear correlation is observed between the nature of the charged species detected by mass spectrometry, i.e. protonated molecule [M + H], (+) cation radical M(+.) and dication M(++), and the oxidation potentials of the molecules. Moreover, under defined solubility conditions, mass spectrometry provides conclusive evidences for the reversible dimerization of cation-radicals of n-C(2) compounds.  相似文献   
57.
In recent years the direct electron transfer of redox protein on electrode surface has attracted great attentions1. Different kind of modified electrode and various supporting films for immobilization of proteins had been proposed. But most of them are ba…  相似文献   
58.
Retention gape deactivated with Silicone OV-1701-OH show good chromatographic performance and remarkable stability against water induced stationary phase degradrdation. In an attempt to better understand the findamentals off the deactivation process using silanol terminated polysiloxanes, a fumed silica was deactivated with Silicon OV-1701-OH. In contrast to fused silic capillaries, fumed silica (Aerosil A-200) can be studied by 29Si cross-polarization magic-angle-spinning (CPMAS) NMR, thus serving as a model substrate for fused silica. Retention data from inverse gas chromatography at infinite dilurion and 29Si CP MAS NMR data of five Aerosil phases, differing in residual silanol surface concentration, are correlated with the aim of validating this approach for stationary phase characterization. A comparatively detailed model of the deactivating polymer layer that explains the observed absorption activities is deduced. Surface silanols are shown to play a key role in the polymer layer, the structure of which is of primary importance for the absorption behavior after deactivation. Contrary to common belief, the absolute silanol surface concentration after deativation is only of secondary importance for the overall absorption activity. High silanol surface concentrations enhance degradation of the polysiloxane chains into small cyclic fragments as well as subsequent absorption and immobolization to the silica substrate surface. The mobility of linear polysiloxane chains in the kHz regime (as determined bby NMR cross-polarization dynamics) appears to determine the extent which the residual silanols are accessible for analytes. It is therefore anticipated that there is an optimum silanol surface concentration of fused silica surfaces to be deactivated with silanol terminated polysiloxanes; it should be lazrge enough to adsord polymer fragments, but not large to avoid excessive residual silanol activity.  相似文献   
59.
The tris-bipyridine ligand3a and its stoichiometric Rh3+ complex have been prepared. Cyclovoltammograms of the complex at pH 7.4 using a glassy carbon disk electrode reveal a strong reduction peak at –620 mV and two weak reduction peaks at more negative voltage. The reduction potential of the new complex is shifted by 300 mV to more positive values as compared to [Rh(bipy)3]3+. There is no reversible reoxidation peak of the Rh(I) complex formed due to the decomplexation of one of the three bipyridine units in the course of the transition Rh(III)Rh(I). The Rh(III) complex of3a was also studied with respect to its function as a possible redox mediator for the electrochemical regeneration of NADH from NAD+. The preparative electrolysis of the Rh3+ complex of3a in the presence of NAD+ yields a selective formation of NADH, whereas NAD dimers were not detected. On the other hand, a significant acceleration of this reaction compared to [Rh(bipy)3]3+ was not observed.  相似文献   
60.
《Electroanalysis》2006,18(11):1131-1134
The direct electrochemistry of glucose oxidase (GOD) was revealed at a carbon nanotube (CNT)‐modified glassy carbon electrode, where the enzyme was immobilized with a chitosan film containing gold nanoparticles. The immobilized GOD displays a pair of redox peaks in pH 7.4 phosphate buffer solutions (PBS) with the formal potential of about ?455 mV (vs. Ag/AgCl) and shows a surface‐controlled electrode process. Bioactivity remains good, along with effective catalysis of the reduction of oxygen. In the presence of dissolved oxygen, the reduction peak current decreased gradually with the addition of glucose, which could be used for reagentless detection of glucose with a linear range from 0.04 to 1.0 mM. The proposed glucose biosensor exhibited high sensitivity, good stability and reproducibility, and was also insensitive to common interferences such as ascorbic and uric acid. The excellent performance of the reagentless biosensor is attributed to the effective enhancement of electron transfer between enzyme and electrode surface by CNTs, and the biocompatible environment that the chitosan film containing gold nanoparticles provides for immobilized GOD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号