首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14521篇
  免费   2278篇
  国内免费   1588篇
化学   18070篇
晶体学   19篇
力学   3篇
综合类   30篇
数学   2篇
物理学   263篇
  2024年   32篇
  2023年   251篇
  2022年   357篇
  2021年   514篇
  2020年   975篇
  2019年   665篇
  2018年   661篇
  2017年   456篇
  2016年   827篇
  2015年   932篇
  2014年   1016篇
  2013年   1189篇
  2012年   973篇
  2011年   1024篇
  2010年   851篇
  2009年   941篇
  2008年   915篇
  2007年   817篇
  2006年   768篇
  2005年   728篇
  2004年   764篇
  2003年   541篇
  2002年   410篇
  2001年   215篇
  2000年   180篇
  1999年   209篇
  1998年   204篇
  1997年   185篇
  1996年   158篇
  1995年   157篇
  1994年   96篇
  1993年   70篇
  1992年   67篇
  1991年   31篇
  1990年   30篇
  1989年   38篇
  1988年   33篇
  1987年   21篇
  1986年   18篇
  1985年   20篇
  1984年   10篇
  1983年   13篇
  1982年   8篇
  1980年   3篇
  1979年   1篇
  1977年   4篇
  1974年   4篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
251.
252.
Novel guanidinium ionic liquid‐grafted rigid poly(p‐phenylene) (PPPIL) microspheres have been developed for metal scavenging and catalysis. The noble‐metal nanoparticles supported on the microspheres surface can be used as efficient heterogeneous catalysts. The combination of nanoparticles and ionic liquid fragments on the microsphere surfaces enhance the activity and durability of the catalyst. The PPPIL ? Pd0 catalyst has been tested in the Suzuki cross‐coupling reaction, and exhibits much higher catalytic activity than Pd catalysts supported on porous polymer matrices. The PPPIL ? Pd0 catalyst can be recycled at least for nine runs without any significant loss of activity. The present approach may, therefore, have potential applications in transition‐metal‐nanocatalyzed reactions.  相似文献   
253.
In this paper we report the results of an extensive experimental kinetic study carried out on the novel ethylene trimerization catalyst system, comprising the chromium source [CrCl3(thf)3] (thf=tetrahydrofuran), a Ph2P‐N(iPr)‐P(Ph)‐N(iPr)H (PNPNH) ligand (Ph=phenyl, iPr=isopropyl), and triethylaluminum (AlEt3) as activator. It could be shown that the initial activity shows a first‐order dependency on the ethylene concentration. Also, a first‐order dependency was found for the catalyst concentration. The initial activity follows a typical Arrhenius behavior with an experimentally determined activation energy of 52.6 kJ mol?1. At elevated temperatures (ca. 80 °C), a significant deactivation was observed, which can be tentatively traced back to a ligand rearrangement in the presence of AlEt3. After a fast initial phase, a pronounced ‘kink’ in the ethylene‐uptake curve is observed, followed by a slow, almost linear, further increase of the total ethylene consumption. The catalyst composition, in particular the ligand/chromium and the cocatalyst/chromium molar ratio, has a strong impact on the catalytic performance of the trimerization of ethylene.  相似文献   
254.
The development of the first trans‐selective catalytic asymmetric [2+2] cyclocondensation of acyl halides with aliphatic aldehydes furnishing 3,4‐disubstituted β‐lactones is described. This work made use of a new strategy within the context of asymmetric dual activation catalysis: it combines the concepts of Lewis acid and organic aprotic ion pair catalysis in a single catalyst system. The methodology could also be applied to aromatic aldehydes and offers broad applicability (29 examples). The utility was further demonstrated by nucleophilic ring‐opening reactions that provide highly enantiomerically enriched anti‐aldol products.  相似文献   
255.
The asymmetric addition of trimethylsilyl cyanide to aldehydes can be catalysed by Lewis acids and/or Lewis bases, which activate the aldehyde and trimethylsilyl cyanide, respectively. It is not always apparent from the structure of the catalyst whether Lewis acid or Lewis base catalysis predominates. To investigate this in the context of using salen complexes of titanium, vanadium and aluminium as catalysts, a Hammett analysis of asymmetric cyanohydrin synthesis was undertaken. When Lewis acid catalysis is dominant, a significantly positive reaction constant is observed, whereas reactions dominated by Lewis base catalysis give much smaller reaction constants. [{Ti(salen)O}2] was found to show the highest degree of Lewis acid catalysis, whereas two [VO(salen)X] (X=EtOSO3 or NCS) complexes both displayed lower degrees of Lewis acid catalysis. In the case of reactions catalysed by [{Al(salen)}2O] and triphenylphosphine oxide, a non‐linear Hammett plot was observed, which is indicative of a change in mechanism with increasing Lewis base catalysis as the carbonyl compound becomes more electron‐deficient. These results suggested that the aluminium complex/triphenylphosphine oxide catalyst system should also catalyse the asymmetric addition of trimethylsilyl cyanide to ketones and this was found to be the case.  相似文献   
256.
The isolation of σ‐alkylpalladium Heck intermediates, possible when β‐hydride elimination is inhibited, is a rather rare event. Performing intramolecular Heck reactions on N‐allyl‐2‐halobenzylamines in the presence of [Pd(PPh3)4], we isolated and characterized a series of stable bridged palladacycles containing an iodine or bromine atom on the palladium atom. Indolyl substrates were also tested for isolation of the corresponding complexes. X‐ray crystallographic analysis of one of the indolyl derivatives revealed the presence of a five‐membered palladacycle with the metal center bearing a PPh3 ligand and an iodine atom in a cis position with respect to the nitrogen atom. The stability of the σ‐alkylpalladium complexes is probably a consequence of the strong constraint resulting from the bridged junction that hampers the cisoid conformation essential for β‐hydride elimination. Subsequently, the thus obtained bridged five‐membered palladacycles were proven to be effective precatalysts in Heck reactions as well as in cross‐coupling processes such as Suzuki and Stille reactions.  相似文献   
257.
A porous perovskite BaCoxFeyZr0.9?x?yPd0.1O3?δ (BCFZ‐Pd) coating was deposited onto the outer surface of a BaCoxFeyZr1?x?yO3?δ (BCFZ) perovskite hollow‐fiber membrane. The surface morphology of the modified BCFZ fiber was characterized by scanning electron microscopy (SEM), indicating the formation of a BCFZ‐Pd porous layer on the outer surface of a dense BCFZ hollow‐fiber membrane. The oxygen permeation flux of the BCFZ membrane with a BCFZ‐Pd porous layer increased 3.5 times more than that of the blank BCFZ membrane when feeding reactive CH4 onto the permeation side of the membrane. The blank BCFZ membrane and surface‐modified BCFZ membrane were used as reactors to shift the equilibrium of thermal water dissociation for hydrogen production because they allow the selective removal of the produced oxygen from the water dissociation system. It was found that the hydrogen production rate increased from 0.7 to 2.1 mL H2 min?1 cm?2 at 950 °C after depositing a BCFZ‐Pd porous layer onto the BCFZ membrane.  相似文献   
258.
An efficient tandem reaction for the asymmetric synthesis of six‐membered spirocyclic oxindoles has been successfully developed through a formal [2+2+2] annulation strategy. The amine‐catalysed stereoselective Michael addition of aliphatic aldehydes to electron‐deficient olefinic oxindole motifs gave chiral C3 components, which were further combined with diverse electrophiles (activated olefins or imines) to afford spirocyclic oxindoles with versatile molecular complexity (up to six contiguous stereogenic centres, high diastereo‐ and enantioselectivities).  相似文献   
259.
Steric interaction of reagents with zeolites was studied in isopropylation, sec‐butylation, and tert‐butylation of naphthalene (NP) over several large‐pore zeolites to elucidate the mechanism of selective catalysis. Selectivities for dialkylnaphthalene (DAN) isomers were influenced by the type of zeolite and bulkiness of alkylating agent. Selective formation of β,β‐ and 2,6‐diisopropylnaphthalene (DIPN) occurred only over H‐mordenite (MOR) in the isopropylation of NP using propene; bulky transition states of α,α‐ and α,β‐DIPN are excluded because of steric restriction by the channels, resulting in selective formation of β,β‐ and 2,6‐DIPN. However, low selectivities for β,β‐ and 2,6‐DIPN were observed over the zeolites, SSZ‐24 (AFI), SSZ‐55 (ATS), and SSZ‐42 (IFR) with 12‐membered‐ring (12‐MR) pore entrances of one‐dimensional channels, CIT‐5 (CFI), UTD‐1 (DON), and SSZ‐53 (SFH) with 14‐membered‐ring (14‐MR) pore entrances of one‐dimensional channels, and Y‐zeolite (FAU), zeolite β (BEA), and CIT‐1 (CON) with 12‐MR pore entrances of three‐dimensional channels, because their channels are too large for the exclusion of bulky isomers. Catalysis over these zeolites occurs under kinetic and/or thermodynamic control, resulting in predominant formation of α,α‐ and α,β‐DIPN at lower temperatures and an increase of the stable isomer β,β‐DIPN at higher temperatures. The selectivities for β,β‐ and 2,6‐DAN were enhanced with the increase in bulkiness of alkylating agents: 1‐butene for sec‐butylation and 2‐methylpropene for tert‐butylation. In particular, β,β‐di‐tert‐butylnaphthalene (DTBN) was selectively formed in the tert‐butylation. The selectivities for β,β‐ and 2,6‐DAN were enhanced even in large channels: the transition states of the least bulky isomers only fit the channels because other bulky isomers are excluded by steric restriction of the channels. However, tert‐butylation over FAU, BEA, and CON had selectivities for 2,6‐DTBN of around 50–60%, although selectivities for β,β‐DTBN were almost 100% selectivity; these zeolites can hardly recognize the differences between 2,6‐ and 2,7‐DTBN. The results indicate that the fitting of the least bulky isomers to zeolite channels, leading to the exclusion of other bulky isomers, is essential for highly shape‐selective catalysis.  相似文献   
260.
Selective polymeric extractants were prepared for preconcentration of Cibacron reactive red dye, a dye that is often applied with Cibacron reactive blue and Cibacron reactive yellow for dyeing of fabrics. The best extractant was fabricated (in chloroform) using methacrylic acid (as monomer), ethylene glycol dimethacrylate (as crosslinker), AIBN (as initiator for polymerization), and red dye as template molecule, with a molar stoichiometric ratio of 8.0:40.0:2.5:0.63, respectively. The structure of the molecularly imprinted polymer (MIP) was robust, and resisted dissolution up to 260 °C. Compared with the un-imprinted polymer, the imprinted product has a large specific surface area which improved its adsorption capacity. The effect of imprinting was obvious from the adsorption capacity measured at pH 4 for red dye (the imprinted molecule), which was increased from 24.0 to 79.3 mg g−1 after imprinting. Equilibrium adsorption studies revealed that the dye-imprinted-polymer enables efficient extraction of red dye even in the presence of blue and yellow dyes which have similar chemical natures to the red dye. The selectivity coefficients S red dye/dye, were 13.9 and 17.1 relative to the yellow and blue dyes, respectively. The MIP was found to be effective for red dye preconcentration, with a preconcentration factor of 100, from tap water and treated textile wastewater. The factors affecting extraction of red dye by the MIP were studied and optimized. Under the optimized extraction conditions, red dye was selectively quantified in the presence of other competing dyes at a concentration of 20 μg L−1 from different water systems with satisfactory recoveries (91–95%) and RSD values (∼5.0%).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号