首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3480篇
  免费   241篇
  国内免费   423篇
化学   3302篇
晶体学   27篇
力学   111篇
综合类   3篇
数学   29篇
物理学   672篇
  2024年   8篇
  2023年   81篇
  2022年   42篇
  2021年   42篇
  2020年   56篇
  2019年   48篇
  2018年   44篇
  2017年   70篇
  2016年   152篇
  2015年   155篇
  2014年   162篇
  2013年   200篇
  2012年   240篇
  2011年   298篇
  2010年   225篇
  2009年   238篇
  2008年   193篇
  2007年   231篇
  2006年   190篇
  2005年   202篇
  2004年   209篇
  2003年   147篇
  2002年   125篇
  2001年   94篇
  2000年   86篇
  1999年   91篇
  1998年   67篇
  1997年   85篇
  1996年   73篇
  1995年   69篇
  1994年   35篇
  1993年   34篇
  1992年   29篇
  1991年   26篇
  1990年   23篇
  1989年   17篇
  1988年   13篇
  1987年   10篇
  1986年   3篇
  1985年   4篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   6篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1974年   2篇
  1973年   1篇
排序方式: 共有4144条查询结果,搜索用时 15 毫秒
991.
In this work an electrochemical immunoassay, based on a direct competitive assay, was developed using magnetic beads as solid phase and carbon screen‐printed arrays as transducers for the detection of sulfonamides in food matrices such as honey. Magnetic beads coated with protein A were modified by immobilisation of specific antibodies and then the competition between the target analyte and the corresponding analyte‐labelled with an enzyme was carried out; after the immunosensing step, beads were captured by a magnet onto the working surfaces of a screen‐printed eight‐electrodes array for a multiple electrochemical detection. Screen‐printed eight‐electrodes arrays were chosen as transducers due to the possibility to repeat multiple analysis and to test different samples simultaneously. Alkaline Phosphatase (AP) was used as enzyme label and Differential Pulse Voltammetry (DPV) as fast electrochemical technique. Calibration curves demonstrate that the developed electrochemical immunoassay was able to detect this class of drugs in standard solutions at low concentrations (ng/mL levels). The short incubation times (25 min) and the fast electrochemical measurement (10 sec) make of these systems a possible alternative to classic ELISA tests.  相似文献   
992.
Sol-gel technology provides a simple and reliable method for solid-phase microextraction (SPME) fiber preparation through in situ creation of surface-bonded organic-inorganic hybrid coatings characterized by enhanced thermal stability and solvent-resistance properties that are important for the coupling of SPME with GC and HPLC, respectively. The sol-gel coating technology has led to the development of an extensive array of sol-gel sorbent coatings for SPME. In this article, sol-gel microextraction coatings are reviewed, with particular attention on their synthesis, characterization, and applications in conjunction with GC and HPLC analyses. In addition, the development of sol-gel-coated stir bars, their inherent advantages, and applications are discussed. Next, the development and applications of sol-gel capillary microextraction (CME) in hyphenation with GC and HPLC is extensively reviewed. The newly emerging germania- and titania-based sol-gel microextraction phases look promising, especially in terms of pH and hot solvent stability. Finally, sol-gel monolithic beds for CME are reviewed. Such monolithic beds are in a position to greatly improve the extracting capabilities and enhanced sensitivity in CME.  相似文献   
993.
A molecularly imprinted organically modified silica was prepared through a simple sol‐gel procedure and evaluated as a specific sorbent for SPE of triazine herbicides. The material proved to be highly selective for the template molecule, atrazine, as well as for other structurally related species such as simazine and propazine. The performance of this material was shown to be comparable with commercial acrylate‐based molecularly imprinted polymers. The molecularly imprinted silica was applied for the determination of trace levels of the target triazine analytes in sugar cane juice (locally called “garapa”).  相似文献   
994.
The design and properties of novel type of solid‐contact ionophore‐based ion‐selective microelectrodes are reported. The microelectrode is based on an insulated needle‐shaped metallic wire with an exposed apex. The ion‐to‐electron transducer is made of poly(3‐octylthiophene‐2,5‐diyl) and placed between an ion‐selective membrane and the metallic tip. The ion‐selective polyvinyl chloride‐based membrane is deposited atop the layer of conductive polymer. The length of the ion‐sensitive part of the electrode is less than 10 μm. pH and Mg2+‐selective microelectrodes were constructed and tested showing stable potential and fast response that are essential properties for the practical application of microelectrodes for localized scanning measurements.  相似文献   
995.
D.F. Zhou  Y.J. Xia  J.X. Zhu  J. Meng   《Solid State Sciences》2009,11(9):1587-1591
Ce6−xDyxMoO15−δ (0.0 ≤ x ≤ 1.8) were synthesized by modified sol–gel method. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The XRD patterns showed that the materials were single phase with a cubic fluorite structure. Impedance spectroscopy measurement in the temperature range between 350 °C and 800 °C indicated a sharp increase in conductivity for the system containing small amount of Dy2O3. The Ce5.6Dy0.4MoO15−δ detected to be the best conducting phase with the highest conductivity (σt = 8.93 × 10−3 S cm−1) is higher than that of Ce5.6Sm0.4MoO15−δ (σt = 2.93 × 10−3 S cm−1) at 800 °C, and the corresponding activation energy of Ce5.6Dy0.4MoO15−δ (0.994 eV) is lower than that of Ce5.6Sm0.4MoO15−δ (1.002 eV).  相似文献   
996.
Initialization is a critical processing step that has thus far limited the application of the single-chamber solid oxide fuel cell (SC-SOFC). In-situ initialization of a SC-SOFC with a nickel-based anode by methane–air mixtures was investigated. Porous Ru–CeO2 was used as a catalyst layer over a Ni-ScSZ cermet anode. Catalytic testing demonstrated Ru–CeO2 had high activity for methane oxidation. The Ru in the catalyst layer catalyzed the formation of syngas, which successfully reduced the nickel oxide to metallic nickel in the anode. Single cells with a La0.8Sr0.2MnO3 (LSM) cathode, initialized by this in-situ reduction method, delivered peak power densities of 205 and 327 mW cm−2 at 800 °C and 850 °C, respectively. Such performances were better than those of the cell without the Ru–CeO2 catalyst layer that was initialized by an ex-situ reduction method were.  相似文献   
997.
Remarkable power density was obtained for anode-supported solid oxide fuel cells (SOFCs) based on La0.8Sr0.2Ga0.8Mg0.2O3−δ (LSGM) electrolyte films, fabricated following an original procedure that allowed avoiding undesired reactions between LSGM and electrode materials, especially Ni. Electrophoretic deposition (EPD) was used for the fabrication of 30 μm-thick electrolyte films. Anode supports were made of La0.4Ce0.6O2−x (LDC). The LSGM powder was deposited by EPD on an LDC green tape-cast membrane added with carbon powder, both as pore former and substrate conductivity booster. A subsequent co-firing step at 1490 °C produced dense electrolyte films on porous LDC skeletons. Then, a La0.8Sr0.2Fe0.8Co0.2O3−δ (LSFC) cathode was applied by slurry-coating and calcined at 1100 °C. Finally, the porous LDC layer was impregnated with molten Ni nitrate to obtain, after calcination at 900 °C, a composite NiO–LDC anode. Maximum power densities of 780, 450, 275, 175, and 100 mW/cm2 at 700, 650, 600, 550, and 500 °C, respectively, were obtained using H2 as fuel and air as oxidant, demonstrating the success of the processing strategy. As a comparison, electrolyte-supported SOFCs made of the same materials were tested, showing a maximum power density of 150 mW/cm2 at 700 °C, more than 5 times smaller than the anode-supported counterpart.  相似文献   
998.
The results of a systematic study of the light sensitivity and long-term potential stability (30 days) of poly(pyrrole) (PPy), poly(3-octylthiophene) (POT), poly(3,4-ethylenedioxythiophene) (PEDOT), poly(aniline) (PANI) and plasticised poly(vinyl chloride) (PVC) containing 20% (m/m) PANI are reported. Thin films were prepared either electrochemically or by the solution casting technique. This fundamental study is of importance because conducting polymers (CP) are commonly used as ion-to-electron transduction materials in all-solid-state solid contact ion-selective electrodes. The potential stability test done in 0.1 M KCl (pH 7.5) simulates the extreme situation when the CP-based SC becomes in direct contact with water. Films prepared of a nanodispersion of PANI showed both good potential stability and insensitivity to light even under illumination with very intensive light (>105 lx). In contrary, it was observed that POT is very light-sensitive. Upon illumination with intensive light, the potential responses of POT films prepared by solution casting and electropolymerisation were 315 and 590 mV, respectively. A room light sensitivity of approximately −10 to −15 mV was observed for these films. The other CPs in this study were insensitive to room light (∼150 lx), but were light-sensitive under illumination with intensive light. The potential drift of PPy(Cl) is below −10 μV/h (3–30 days), whereas the other most stable CPs in this study had a slightly higher potential drift.  相似文献   
999.
In the present work we address the development of a simple and effective method for the determination of triazine herbicide residues in horticultural products by CE in nonaqueous media (NACE). Potato samples were selected as a representative matrix of such foods with a nonfatty content. Isolation of the analytes from the sample matrix was accomplished by extraction with organic solvents, assisted by ultrasound; a clean‐up step of the organic extracts was carried out with SPE, using an Oasis MCX® sorbent to retain the analytes directly from the organic medium. The detection limits achieved in spiked potatoes (1.7–4.0 μg/kg) were lower than the default value of maximum residue level (MRL) established by current EU legislation for pesticide residues in foodstuffs. The results obtained were compared with HPLC in order to evaluate the performance of the NACE procedure.  相似文献   
1000.
In this paper, solid‐phase extraction (SPE) in combination with dispersive liquid–liquid microextraction (DLLME) has been developed as a sample pretreatment method with high enrichment factors for the sensitive determination of amide herbicides in water samples. In SPE–DLLME, amide herbicides were adsorbed quantitatively from a large volume of aqueous samples (100 mL) onto a multiwalled carbon nanotube adsorbent (100 mg). After elution of the target compounds from the adsorbent with acetone, the DLLME technique was performed on the resulting solution. Finally, the analytes in the extraction solvent were determined by gas chromatography–mass spectrometry. Some important extraction parameters, such as flow rate of sample, breakthrough volume, sample pH, type and volume of the elution solvent, as well as salt addition, were studied and optimized in detail. Under optimum conditions, high enrichment factors ranging from 6593 to 7873 were achieved in less than 10 min. There was linearity over the range of 0.01–10 μg/L with relative standard deviations of 2.6–8.7%. The limits of detection ranged from 0.002 to 0.006 μg/L. The proposed method was used for the analysis of water samples, and satisfactory results were achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号