首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   699篇
  免费   275篇
  国内免费   66篇
化学   282篇
晶体学   9篇
力学   43篇
综合类   5篇
数学   26篇
物理学   675篇
  2024年   1篇
  2023年   6篇
  2022年   34篇
  2021年   37篇
  2020年   29篇
  2019年   33篇
  2018年   26篇
  2017年   28篇
  2016年   35篇
  2015年   42篇
  2014年   43篇
  2013年   47篇
  2012年   50篇
  2011年   74篇
  2010年   65篇
  2009年   58篇
  2008年   49篇
  2007年   64篇
  2006年   44篇
  2005年   53篇
  2004年   30篇
  2003年   39篇
  2002年   27篇
  2001年   18篇
  2000年   18篇
  1999年   18篇
  1998年   13篇
  1997年   6篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   7篇
  1992年   5篇
  1991年   1篇
  1990年   6篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1981年   1篇
  1980年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有1040条查询结果,搜索用时 78 毫秒
21.
Both single-molecule detection (SMD) methods and miniaturization technologies have developed very rapidly over the last ten years. By merging these two techniques, it may be possible to achieve the optimal requirements for the analysis and manipulation of samples on a single molecule scale. While miniaturized structures and channels provide the interface required to handle small particles and molecules, SMD permits the discovery, localization, counting and identification of compounds. Widespread applications, across various bioscience/analytical science fields, such as DNA-analysis, cytometry and drug screening, are envisaged. In this review, the unique benefits of single fluorescent molecule detection in microfluidic channels are presented. Recent and possible future applications are discussed.Dedicated to the memory of Wilhelm Fresenius  相似文献   
22.
Two efficient, physically based models for the real-time simulation of molecular device characteristics of single molecules are developed. These models assume that through-molecule tunnelling creates a steady-state Lorentzian distribution of excess electron density on the molecule and provides for smooth transitions for the electronic degrees of freedom between the tunnelling, molecular-excitation, and charge-hopping transport regimes. They are implemented in the fREEDA™ transient circuit simulator to allow for the full integration of nanoscopic molecular devices in standard packages that simulate entire devices including CMOS circuitry. Methods are presented to estimate the parameters used in the models via either direct experimental measurement or density-functional calculations. The models require 6–8 orders of magnitude less computer time than do full a priori simulations of the properties of molecular components. Consequently, molecular components can be efficiently implemented in circuit simulators. The molecular-component models are tested by comparison with experimental results reported for 1,4-benzenedithiol.  相似文献   
23.
The thermoreversible gelation of semi-diluted atactic polyacrylnitrile (PAN)/dimethylformamide (DMF)-solutions has been studied. The structural features of PAN/DMF-gels, formed by supercooling have been investigated by DSC-, x-ray- and swelling measurements. A new structural model has been introduced to describe the morphology of the junction zones of PAN/DMF-gels and to also explain the gelation behavior of PAN/DMF-solutions as the structural features of PAN/DMF-gels. The junction zones of a PAN/DMF-gel have been defined as ordered junction zones.A gelation enthalpy of about H=–6 kJ/mol supports the idea that an ordered junction zone is formed by intermolecularly neighboring stereoregular parts of atactic PAN chains due to a nucleation process in the solution. It can be defined as a strongly distributed fringed micelle.  相似文献   
24.
Emerging fields of biochemical research, such as metabolomics, present challenges to current separation technologies because of the large number of metabolites present in a cell and their often low (submicromolar) concentration. Although capillary electrophoresis (CE) holds great promise as the method of choice for high-resolution separations of biological samples, it suffers from poor concentration sensitivity, especially with the use of UV detection. In CE, sweeping and dynamic pH junction represent two complementary on-line focusing techniques that have been used for sensitivity enhancement of hydrophobic and weakly acidic analytes, respectively. However, the application of either the sweeping or dynamic pH junction technique alone might, in some cases, be less effective for the analysis of certain sample mixtures. Recent work in the development of a hyphenated dynamic pH junction-sweeping technique is presented as an effective on-line method of preconcentration suitable for both hydrophilic (anionic) and hydrophobic (neutral) analytes. Sensitive analyses of flavin metabolites by CE with laser-induced fluorescence (LIF) detection is demonstrated in various biological matrixes, including cell extracts of Bacillus subtilis, pooled human plasma, as well as heat-deproteinized flavoenzymes. Enhanced analyte band narrowing and improved sensitivity is achieved for flavins using dynamic pH junction-sweeping compared to either sweeping or dynamic pH junction alone. This results in over a 1200-fold improvement in sensitivity relative to conventional injection methods, giving a limit of detection (LOD, defined as S/N = 3) of about 4.0 x 10(-12) M. Strategies for sensitive and more comprehensive analyses of other cell metabolites, including nucleotides, coenzymes, and steroids, are also discussed when using on-line focusing techniques in conjunction with multiplexed CE and UV detection.  相似文献   
25.
The Ni/CNT catalyst was fabricated by directly dipping carbon nanotube precursors refluxed in 4 M of nitric acid into Ni electroless plating bath, and used to synthesize new carbon nanotubes. The experimental results indicate that the duration of acid-treatment of carbon nanotubes precursors exerts a great influence on the catalysis of Ni/CNT in the synthesis of carbon nanotubes and hence the structures of the new carbon nanotubes. When the carbon nanotubes precursors were refluxed for 0.5 h in 4 M of nitric acid, bamboo-shaped carbon nanotubes (BSCNT) or Y junction carbon nanotubes in the carbon products were obtained. As the duration of acid-treatment of carbon nanotubes precursors increased to 6 h, the as-prepared Ni/CNT displayed higher activity, and the carbon nanotube products were high pure without any Y junction structure or any separation layers in hollow.  相似文献   
26.
Summary Elastomeric networks of high extensibility were prepared by end-linking mixtures of vinyl-terminated polydimethylsiloxane chains having molecular weights of approximately 600 and 11,000 g mol–1, with silanes chosen to give junction functionalities ranging from 3 to 8. The resulting bimodal networks were studied in elongation, at 25 °C, to their rupture points, and in swelling equilibrium in benzene at room temperature. The elongation moduli [f *] were found to be in satisfactory agreement with previous results obtained by end-linking hydroxyl-terminated polydimethylsiloxane chains. Values of [f *] at low and moderate deformations gave relatively low values of the ratio of elasticity constants 2C 2/2C 1, which is a measure of the extent to which the elongation changes from approximately affine to nonaffine as the elongation increases. The low values obtained for this ratio are presumably due to diminished interpenetration of configurational domains in the case of very short chains. In spite of its small magnitude, 2C 2/2C 1 does show some decrease with increase in , as predicted by the recent molecular theory of rubberlike elasticity developed by Flory. The swelling equilibrium results were also found to be in satisfactory agreement with theory. The elongation moduli increased significantly at high elongations, and the values of the elongation at which the upturn was first discernible were very nearly independent of , This is consistent with the interpretation of this anomalous behaviour in terms of limited chain extensibility. The maximum extensibility generally decreased somewhat with increase in and this caused a decrease in both the ultimate strength and the toughness of the elastomer, as measured by the energy required for rupture.  相似文献   
27.
The accuracy of ultrashallow depth profiling was studied by secondary ion mass spectrometry (SIMS) and high‐resolution Rutherford backscattering spectroscopy (HRBS) to obtain reliable depth profiles of ultrathin gate dielectrics and ultrashallow dopant profiles, and to provide important information for the modeling and process control of advanced complimentary metal‐oxide semiconductor (CMOS) design. An ultrathin Si3N4/SiO2 stacked layer (2.5 nm) and ultrashallow arsenic implantation distributions (3 keV, 1 × 1015 cm?2) were used to explore the accuracy of near‐surface depth profiles measured by low‐energy O2+ and Cs+ bombardment (0.25 and 0.5 keV) at oblique incidence. The SIMS depth profiles were compared with those by HRBS. Comparison between HRBS and SIMS nitrogen profiles in the stacked layer suggested that SIMS depth profiling with O2+ at low energy (0.25 keV) and an impact angle of 78° provides accurate profiles. For the As+‐implanted Si, the HRBS depth profiles clearly showed redistribution in the near‐surface region. In contrast, those by the conventional SIMS measurement using Cs+ primary ions at oblique incidence were distorted at depths less than 5 nm. The distortion resulted from a long transient caused by the native oxide. To reduce the transient behavior and to obtain more accurate depth profiles in the near‐surface region, the use of O2+ primary ions was found to be effective, and 0.25 keV O2+ at normal incidence provided a more reliable result than Cs+ in the near‐surface region. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
28.
Current in heterogeneous tunnel junctions is studied in the framework of the parabolic conduction-band model. The developed model of the electron tunneling takes explicitly into account the difference of effective masses between ferromagnetic and insulating layers and between conduction subbands. Calculations for Fe/MgO/Fe-like structures have shown the essential impact of effective mass differences in regions (constituents) of the structure on the tunnel magnetoresistance of the junction.  相似文献   
29.
Canonical G-quadruplexes can adopt a variety of different topologies depending on the arrangement of propeller, lateral, or diagonal loops connecting the four G-columns. A novel intramolecular G-quadruplex structure is derived through inversion of the last G-tract of a three-layered parallel fold, associated with the transition of a single propeller into a lateral loop. The resulting (3+1) hybrid fold features three syn⋅anti⋅anti⋅anti G-tetrads with a 3’-terminal all-syn G-column. Although the ability of forming a duplex stem-loop between G-tracts seems beneficial for a propeller-to-lateral loop rearrangement, unmodified G-rich sequences resist folding into the new (3+1) topology. However, refolding can be driven by the incorporation of syn-favoring guanosine analogues into positions of the fourth G-stretch. The presented hybrid-type G-quadruplex structure as determined by NMR spectroscopy may provide for an additional scaffold in quadruplex-based technologies.  相似文献   
30.
In this work, the design, synthesis, and single-molecule conductance of ethynyl- and butadiynyl-ruthenium molecular wires with thioether anchor groups [RS=n-C6H13S, p-tert-Bu−C6H4S), trans-{RS−(C≡C)n}2Ru(dppe)2 (n=1 ( 1R ), 2 ( 2R ); dppe: 1,2-bis(diphenylphosphino)ethane) and trans-(n-C6H13S−C≡C)2Ru{P(OMe)3}4 3hex ] are reported. Scanning tunneling microscope break-junction study has revealed conductance of the organometallic molecular wires with the thioacetylene backbones higher than that of the related organometallic wires having arylethynylruthenium linkages with the sulfur anchor groups, trans-{p-MeS−C6H4-(C≡C)n}2Ru(phosphine)4 4 n (n=1, 2) and trans-(Th−C≡C)2Ru(phosphine)4 5 (Th=3-thienyl). It should be noted that the molecular junctions constructed from the butadiynyl wire 2R , trans-{ Au −RS−(C≡C)2}2Ru(dppe)2 ( Au : gold metal electrode), show conductance comparable to that of the covalently linked polyynyl wire with the similar molecular length, trans-{ Au −(C≡C)3}2Ru(dppe)2 63 . The DFT non-equilibrium Green's function (NEGF) study supports the highly conducting nature of the thioacetylene molecular wires through HOMO orbitals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号