首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5829篇
  免费   1576篇
  国内免费   455篇
化学   2398篇
晶体学   100篇
力学   248篇
综合类   40篇
数学   338篇
物理学   4736篇
  2024年   21篇
  2023年   110篇
  2022年   112篇
  2021年   140篇
  2020年   147篇
  2019年   164篇
  2018年   141篇
  2017年   188篇
  2016年   254篇
  2015年   228篇
  2014年   468篇
  2013年   382篇
  2012年   458篇
  2011年   491篇
  2010年   449篇
  2009年   453篇
  2008年   403篇
  2007年   470篇
  2006年   397篇
  2005年   358篇
  2004年   321篇
  2003年   265篇
  2002年   205篇
  2001年   167篇
  2000年   160篇
  1999年   159篇
  1998年   135篇
  1997年   123篇
  1996年   106篇
  1995年   66篇
  1994年   61篇
  1993年   49篇
  1992年   43篇
  1991年   45篇
  1990年   19篇
  1989年   31篇
  1988年   19篇
  1987年   16篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   7篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1975年   1篇
  1972年   1篇
  1957年   1篇
排序方式: 共有7860条查询结果,搜索用时 15 毫秒
991.
Iron phthalocyanine-based polymers (PFePc) are attractive noble-metal-free candidates for catalyzing oxygen reduction reaction (ORR). However, the low site-exposure degree and poor electrical conductivity of bulk PFePc restricted their practical applications. Herein, laminar PFePc nanosheets covalently and longitudinally linked to graphene (3D-G-PFePc) was prepared. Such structural engineering qualifies 3D-G-PFePc with high site utilization and rapid mass transfer. Thence, 3D-G-PFePc demonstrates efficient ORR performance with a high specific activity of 69.31 μA cm−2, a high mass activity of 81.88 A g−1, and a high turnover frequency of 0.93 e s−1 site−1 at 0.90 V vs. reversible hydrogen electrode in O2-saturated 0.1 M KOH, outperforming the lamellar PFePc wrapped graphene counterpart. Systematic electrochemical analyses integrating variable-frequency square wave voltammetry and in situ scanning electrochemical microscopy further underline the rapid kinetics of 3D-G-PFePc towards ORR.  相似文献   
992.
This article presents an overview of the development, operation, and applications of optical nanobiosensors for use in in vivo detection of biotargets in individual living cells. The nanobiosensors are equipped with immobilized bioreceptor probes (e.g., antibodies, enzyme substrate) selective to specific molecular targets. Laser excitation is transmitted into the fiber producing an evanescent field at the tip of the fiber in order to excite target molecules bound to the bioreceptors immobilized at the fiber tips. A photometric system detects the optical signal (e.g., fluorescence) originated from the analyte molecules or from the analyte–bioreceptor reaction. Examples of detection of biospecies and molecular signaling pathways of apoptosis in a living cell are discussed to illustrate the potential of the nanobiosensor technology for single cell analysis.  相似文献   
993.
A numerical model, describing laser–solid interaction (i.e., metal target heating, melting and vaporization), vapor plume expansion, plasma formation and laser–plasma interaction, is applied to describe the effects of double pulse (DP) laser ablation and laser induced breakdown spectroscopy (LIBS). Because the model is limited to plume expansion times in the order of (a few) 100 ns in order to produce realistic results, the interpulse delay times are varied between 10 and 100 ns, and the results are compared to the behavior of a single pulse (SP) with the same total energy. It is found that the surface temperature at the maximum is a bit lower in the DP configuration, because of the lower irradiance of one laser pulse, but it remains high during a longer time, because it rises again upon the second laser pulse. Consequently, the target remains for a longer time in the molten state, which suggests that laser ablation in the DP configuration might be more efficient, through the mechanism of splashing of the molten target. The total laser absorption in the plasma is also calculated to be clearly lower in the DP configuration, so that more laser energy can reach the target and give rise to laser ablation. Finally, it is observed that the plume expansion dynamics is characterized by two separate waves, the first one originating from the first laser pulse, and the second (higher) one as a result of the second laser pulse. Initially, the plasma temperature and electron density are somewhat lower than in the SP case, due to the lower energy of one laser pulse. However, they rise again upon the second laser pulse, and after 200 ns, they are therefore somewhat higher than in the SP case. This is especially true for the longer interpulse delay times, and it is expected that these trends will be continued for longer delay times in the μs-range, which are most typically used in DP LIBS, resulting in more intense emission intensities.  相似文献   
994.
5,8-dihydroxy-1,4-dihydro-1,4-methanonaphthalene (DDMN), a substituted phenol, is synthesized by reduction of a cyclic dione, 1,4,4a,8a-tetrahydro-endo-1,4-methano-naphtha-5,8-dione (THMND). Pulse radiolysis technique has been employed to understand the nature of transient species formed on reaction of radiolytic species of water radiolysis with DDMN.OH radicals were observed to react with DDMN with a bimolecular rate constant of 1.5×1010 dm3 mol−1 s−1. Inhibition of radiation induced lipid-peroxidation by DDMN was studied in rat liver microsomes by assessing the formation of thiobarbituric acid reactive substances (TBARS). It was found to be strongly inhibitory. The results suggest that DDMN has very good antioxidant activity and may possibly emerge as a good radio-protector.  相似文献   
995.
This paper provides analytical chemical information on selected new molecular entities (NMEs) which are drugs that have recently been approved by the FDA. These are the antiretroviral drugs, atazanavir, indinavir and emtricitabine, the antibacterial gemifloxacin, rosuvastatine which is a cholesterol-lowing drug, the anti-cancer drug gefitinib and aprepitant for neurological disorders. Electrospray ionisation-quadrupole ion trap mass spectrometry (ESI-MSn) was employed to generate tandem mass spectrometric (MS2) data of the drugs studied and structural assignments of product ions were supported by quadrupole time-of-flight mass spectrometry (QToF-MS/MS). These fragmentation studies were then utilised in the development and validation of a specific and sensitive liquid chromatographic method (LC–ESI-MS2) to identify and determine these drugs at therapeutic concentration levels in serum after a single protein precipitation procedure with acetonitrile. In addition, this method was compared to the application of gas liquid chromatography-flame ionisation detection (GLC-FID) and differential pulse polarography (DPP) for the analysis of these NMEs in serum.  相似文献   
996.
The adsorptive voltammetric behavior of resveratrol was studied at a graphite electrode in B‐R buffer (pH = 6.0) solution using adsorptive cyclic voltammetric technique. The oxidation of resveratrol is an irreversible adsorption controlled process. The oxidation mechanism was proposed and discussed in this work. The dependence of the current on pH and the concentration and nature of buffer were investigated to optimize the experimental conditions for the determination of resveratrol. It was found that in the range of 8.0 × 10?9 ~ 2.0 × 10?6 mol/L, the currents measured by differential pulse voltammetries presented a good linear property as a function of the concentrations of resveratrol. In addition, validation parameters, such as reproducibility, sensitivity and recovery were evaluated as well. The proposed method was also successfully applied for the determination of resveratrol in Chinese patent medicine with good results.  相似文献   
997.
An adsorptive differential pulse stripping method for the simultaneous determination of lead and tin is proposed. The procedure involves an adsorptive accumulation of lead and tin on a hanging mercury drop electrode (HMDE), followed by oxidation of adsorbed lead and tin by voltammetric scan using differential pulse modulation. The optimum experimental conditions are: 0.2 mol L?1 HNO3, accumulation potential of ?900 mV versus Ag/AgCl, accumulation time of 200 s, scan rate of 20 mV s?1 and pulse height of 80 mV. Lead and tin peak currents were observed in the same potential region at about ?400 mV. The simultaneous determination of lead and tin by using voltammetry is a difficult problem in analytical chemistry, due to voltammogram interferences. The resolution of a mixture of lead and tin by the application of orthogonal signal correction‐partial least squares (OSC‐PLS) was performed. The linear dynamic ranges were 0.003‐0.35 and 0.008‐0.50 μg mL?1 and detection limits were land 3 ng mL?1 for lead and tin, respectively. The RMSEP for lead and tin with OSC and without OSC were 2.8737, 6.0557 and 8.0941, 9.5151, respectively. The capability of the method for the analysis of real samples was evaluated by the determination of lead and tin in water samples with satisfactory results.  相似文献   
998.
采用微分脉冲阳极溶出伏安法, 研究了Ag+、Cu2+、Pb2+、Sn2+、Cd2+等多种共存金属离子在掺硼金刚石(BDD)表面双金属共沉积-共溶出电化学行为. 结果表明, 双金属在掺硼金刚石膜表面的共沉积-共溶出模型是由金属本身的析出电位, 金属之间的相互作用, 金属离子和溶液间的相互作用等多种因素决定的. 微分阳极溶出法的研究结果表明, 双金属在掺硼金刚石电极上的共沉积-共溶出过程表现出金属1溶出-金属2溶出、金属1溶出-析氢-金属2溶出、金属1溶出-金属合金溶出-金属2溶出、金属1溶出-析氢-金属2络合物形成-金属2溶出等四种模型.  相似文献   
999.
Inorganic Bi-based perovskites have shown great potential in X-ray detection for their large absorption to X-rays, diverse low-dimensional structures, and eco-friendliness without toxic metals. However, they suffer from poor carrier transport properties compared to Pb-based perovskites. Here, we propose a mixed-halogen strategy to tune the structural dimensions and optoelectronic properties of Cs3Bi2I9−nBrn (0≤n≤9). Ten centimeter-sized single crystals are successfully grown by the Bridgman technique. Upon doping bromine to zero-dimensional Cs3Bi2I9, the crystal transforms into a two-dimensional structure as the bromine content reaches Cs3Bi2I8Br. Correspondingly, the optoelectronic properties are adjusted. Among these crystals, Cs3Bi2I8Br exhibits negligible ion migration, moderate resistivity, and the best carrier transport capability. The sensitivities in 100 keV hard X-ray detection are 1.33×104 and 1.74×104 μC Gyair−1 cm−2 at room temperature and 75 °C, respectively, which are the highest among all reported bismuth perovskites. Moreover, the lowest detection limit of 28.6 nGyair s−1 and ultralow dark current drift of 9.12×10−9 nA cm−1 s−1 V−1 are obtained owing to the high ionic activation energy. Our work demonstrates that Br incorporation is an effective strategy to enhance the X-ray detection performance by tuning the dimensional and optoelectronic properties.  相似文献   
1000.
The integration of highly active single atoms (SAs) and atom clusters (ACs) into an electrocatalyst is critically important for high-efficiency two-electron oxygen reduction reaction (2e ORR) to hydrogen peroxide (H2O2). Here we report a tandem impregnation-pyrolysis-etching strategy to fabricate the oxygen-coordinated Fe SAs and ACs anchored on bacterial cellulose-derived carbon (BCC) (FeSAs/ACs-BCC). As the electrocatalyst, FeSAs/ACs-BCC exhibits superior electrocatalytic activity and selectivity toward 2e ORR, affording an onset potential of 0.78 V (vs. RHE) and a high H2O2 selectivity of 96.5 % in 0.1 M KOH. In a flow cell reactor, the FeSAs/ACs-BCC also achieves high-efficiency H2O2 production with a yield rate of 12.51±0.18 mol gcat−1 h−1 and a faradaic efficiency of 89.4 %±1.3 % at 150 mA cm−2. Additionally, the feasibility of coupling the produced H2O2 and electro-Fenton process for the valorization of ethylene glycol was explored in detail. The theoretical calculations uncover that the oxygen-coordinated Fe SAs effectively regulate the electronic structure of Fe ACs which are the 2e ORR active sites, resulting in the optimal binding strength of *OOH intermediate for high-efficiency H2O2 production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号