首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   896篇
  免费   36篇
  国内免费   174篇
化学   1011篇
晶体学   3篇
力学   22篇
综合类   9篇
数学   4篇
物理学   57篇
  2024年   5篇
  2023年   10篇
  2022年   16篇
  2021年   35篇
  2020年   28篇
  2019年   35篇
  2018年   45篇
  2017年   33篇
  2016年   52篇
  2015年   30篇
  2014年   47篇
  2013年   88篇
  2012年   44篇
  2011年   50篇
  2010年   30篇
  2009年   40篇
  2008年   40篇
  2007年   45篇
  2006年   34篇
  2005年   45篇
  2004年   43篇
  2003年   36篇
  2002年   29篇
  2001年   36篇
  2000年   30篇
  1999年   25篇
  1998年   18篇
  1997年   19篇
  1996年   38篇
  1995年   22篇
  1994年   18篇
  1993年   14篇
  1992年   8篇
  1991年   9篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有1106条查询结果,搜索用时 31 毫秒
121.
Stretchable self‐healing urethane‐based biomaterials have always been crucial for biomedical applications; however, the strength is the main constraint of utilization of these healable materials. Here, a series of novel, healable, elastomeric, supramolecular polyester urethane nanocomposites of poly(1,8‐octanediol citrate) and hexamethylene diisocyanate reinforced with cellulose nanocrystals (CNCs) are introduced. Nanocomposites with various amounts of CNCs from 10 to 50 wt% are prepared using solvent casting technique followed by the evaluation of their microstructural features, mechanical properties, healability, and biocompatibility. The synthesized nanocomposites indicate significantly higher tensile modulus (approximately 36–500‐fold) in comparison to the supramolecular polymer alone. Upon exposure to heat, the materials can reheal, but nevertheless when the amount of CNC is greater than 10 wt%, the self‐healing ability of nanocomposites is deteriorated. These materials are capable of rebonding ruptured parts and fully restoring their mechanical properties. In vitro cytotoxicity test of the nanocomposites using human dermal fibroblasts confirms their good cytocompatibility. The optimized structure, self‐healing attributes, and noncytotoxicity make these nanocomposites highly promising for tissue engineering and other biomedical applications.  相似文献   
122.
A series of phenolic epoxy resin (PEP) modified polyurethane foams (PUF) were prepared via an in-situ polymerization, one step process. It was found that the epoxy modified PUF foam exhibited a perforated network structure with larger cell size, higher open cell porosity and enhanced ovality compared with pure PUF. With increasing content of PEP, the tensile strength, elongation at break and low temperature modulus of PUF decreased. A single Tg was observed for PEP modified PUF, indicating that the two component phases of the polyurethane-epoxy were miscible. With increasing PEP content, the Tg of PUF shifted slightly to higher temperature, tan δmax dropped to lower values, and the retention value of the storage modulus at ?20 and ?10?°C increased. For pure PUF, the cell walls degraded and the structure became disordered after aging under heat and stress, while for PUF/20wt%PEP, the degradation degree was obviously reduced, and an orientation of the cells along the stress direction and a density increase was observed. During aging at 200?°C, the retention of the mechanical properties of PUF/20wt% PEP was much higher than that of pure PUF, and it showed superior stability under heat and stress, attributed to incorporation of the thermally resistant oxazolidone rings and benzene rings in the PU backbones, the highly cross-linked networks of the polyurethane-epoxy systems and the obvious orientation of the cells under stress.  相似文献   
123.
This publication highlights the structure–property relationships in several thermoplastic elastomers (TPEs): one poly(ether-block-amide) and two thermoplastic polyurethane elastomers with ester and ether soft blocks. Structural changes are induced by chemical degradation from virgin samples through hydrolysis and oxidation. Molar mass measurements show an exclusive chain scission mechanism for all TPEs, regardless of the chemical modification condition. Mechanical behavior was nevertheless obtained from uniaxial tensile testing and fracture testing while considering the essential work of fracture (EWF) concept. During the macromolecular scission process, elongation at break shows a plateau followed by a drop, while stress at break decreases steadily. Once again, the trend is identical for all TPEs in all conditions considered. The βwp parameter determined using the EWF concept exhibits an interesting sensitivity to scissions (i.e., molar mas decrease). Plotting elongation at break as a function of molar mass reveals a strong correlation between these two parameters. This master curve is particularly remarkable considering the range of TPEs and chemical breakdown pathways considered (hydrolysis and oxidation at several temperatures). Relevant structure–property relationships are proposed, highlighting that molar mass is a predominant parameter for determining the mechanical properties of thermoplastic elastomers.  相似文献   
124.
Hydrogen bonds are known to play an important role in prescribing the mechanical performance of certain hydrogels such as polyether-based polyurethanes. The quantitative contribution of hydrogen bonds to the toughness of polymer networks, however, has not been elucidated to date. Here, a new physical model is developed to predict the threshold fracture energies of hydrogels physically crosslinked via hydrogen bonds. The model is based on consecutive and sequential dissociation of hydrogen-bonded crosslinks during crack propagation. It is proposed that the scission of hydrogen bonds during crack propagation allows polymer strands in the deformation zone to partially relax and release stored elastic energy. The summation of these partial chain relaxations leads to amplified threshold fracture energies which are 10–45 times larger than those predicted by the classical Lake–Thomas theory. Experiments were performed on a hydrophilic polyurethane hydrogel where urea additions were used to control the density of hydrogen bonds. The measured fracture energies were in good agreement with the calculated values. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1287–1293  相似文献   
125.
《先进技术聚合物》2018,29(5):1377-1384
In this work, thermoplastic polyurethane‐filled montmorillonite‐polypyrrole (TPU/Mt‐PPy) was prepared through melt mixing process for using in electromagnetic shielding applications. The effect of conducting filler content and type, sample thickness, and X‐band frequency range on the electromagnetic interference shielding effectiveness (EMI SE) and EMI attenuation mechanism was investigated. A comparative study of electrical and microwave absorption properties of TPU/Mt‐PPy nanocomposites and TPU/PPy blends was also reported. The total EMI SE average and electrical conductivity of all Mt‐PPy.Cl or Mt‐PPy.DBSA nanocomposites are higher than those found for TPU/PPy.Cl and TPU/PPy.DBSA blends. This behavior was attributed to the higher aspect ratio and better dispersion of the nanostructured Mt‐PPy when compared with neat PPy. Moreover, the presence of Mt‐PPy into TPU matrix increases absorption loss (SEA) mechanism, contributing to increase EMI SE. The total EMI SE values of nanocomposites containing 30 wt% of Mt‐PPy.DBSA with 2 and 5 mm thickness were approximately 16.6 and approximately 36.5 dB, respectively, corresponding to the total EMI of 98% (75% by absorption) and 99.9% (88% by absorption). These results highlight that the nanocomposites studied are promising materials for electromagnetic shielding applications.  相似文献   
126.
《先进技术聚合物》2018,29(3):1048-1055
In this work, surface analysis and failure of rigid polyurethane (PUR) near to the metal interface of an insulating district heat pipe were evaluated. The hybrid composite consists of a steel tube surrounded by a rigid and thick PUR layer for thermal isolation. Accurate life spam approximation of district heat pipes based on PUR and steel is a complex task because of a number of variables involved in the service life of the composite, such as corrosion on the metal pipe, unexpected variations in humidity and temperature, and the quality of raw materials. In this work, artificial aging, mechanical tests, thermogravimetric, and surface analysis were conducted to determine the failure mechanisms at the polymer‐metal interface. From thermogravimetric data, different methods were applied to identify parameters of the kinetics of solid decomposition, and subsequently, the lifetime of the product was estimated. From the methods evaluated, the Chang analysis gave the best approach when compared to results attained by mechanical tests and predictions established by the standard EN 253.  相似文献   
127.
We report a fluoride‐catalyzed deblocking of urethanes as “blocked” isocyanates. Organic and inorganic sources of fluoride ion proved effective for deblocking urethanes and for converting polyurethanes to small molecules. Distinct from conventional deblocking chemistry involving organometallic compounds and high temperatures, the method we describe is metal‐free and operates at or slightly above room temperature. The use of fluorescent blocking agents enabled visual and spectroscopic monitoring of blocking/deblocking reactions, and the selected conditions proved applicable to urethanes containing a variety of blocking groups. The method additionally enabled a one pot deblocking and polymerization with α,ω‐diols. Overall, this deblocking/polymerization strategy offers a convenient and efficient solution to problems that have limited the breadth of applications of polyurethane chemistry.  相似文献   
128.
In this work thermal stability and tensile strength of polyurethanes obtained from glycolysates was investigated. The glycolysates were produced via glycolysis of waste polyurethane foam (PUR) in the reaction with 1,3-propylene glycol (PG). Polyurethanes were synthesized from the obtained intermediates by the prepolymer method using diisocyanate (MDI) and glycolysis product of molecular mass ranging from 700 to 1000, while 1,4-butylene glycol (BDO) was used as a chain elongation agent. The influence of NCO group concentration in prepolymer on tensile strength and elongation at break of polyurethanes was investigated using Zwick universal tensile tester. Thermal decomposition of the obtained glycolysates and polyurethanes was followed by TG coupled with FTIR spectroscopy. The main products of thermal decomposition have been identified.  相似文献   
129.
Mechanical, dynamic mechanical, and rheological behaviors of a short p‐aramid fiber reinforced thermoplastic polyurethane (TPU) have been studied in the range of 0–30 wt% of fibers. The tensile strength of the composite is improved slightly at higher fiber content with a minimum at around 10 wt% of fibers. The addition of fibers markedly reduces elongation at break and entails a steady increase in the elastic modulus, but decreases the wear resistance of the matrix. Storage modulus (E′) is increased and the shapes of loss tangent (tan δ) peaks point to a possible fiber–matrix interaction. Rheological studies show a power law behavior for all composites and increased viscosity with fiber loading. Study of the tensile and cryogenic fracture surfaces by scanning electron microscopy (SEM) indicates good correlation between the modes of failure and strength of the composites. The micrographs reveal good interfacial adhesion and extensive peeling and fibrillation of the fibers in the compounded and fractured composites. Theoretical models have been used to fit the experimental modulus data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
130.
以聚对苯二甲酸乙二醇酯(PEA)、甲苯二异氰酸酯(TDI-80)、扩链剂(MOCA)、分子筛为原料,采用预聚体法制备了聚氨酯/分子筛复合材料.考察了分子筛的种类及加入量对聚氨酯/分子筛复合材料的耐溶剂性能、力学性能及热分解温度的影响.结果表明:在相同加入量的前提下,采用4A和13X分子筛制备的复合材料,前者的耐溶剂性能及力学性能要优于后者,当加入量为5%时,性能达到最佳.两者的加入均能提高复合材料的热分解温度,但影响相差不大.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号