首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14002篇
  免费   1505篇
  国内免费   3572篇
化学   15043篇
晶体学   299篇
力学   114篇
综合类   61篇
数学   21篇
物理学   3541篇
  2024年   36篇
  2023年   209篇
  2022年   450篇
  2021年   499篇
  2020年   762篇
  2019年   520篇
  2018年   444篇
  2017年   610篇
  2016年   747篇
  2015年   695篇
  2014年   835篇
  2013年   1167篇
  2012年   940篇
  2011年   1068篇
  2010年   780篇
  2009年   943篇
  2008年   868篇
  2007年   998篇
  2006年   892篇
  2005年   756篇
  2004年   669篇
  2003年   653篇
  2002年   473篇
  2001年   381篇
  2000年   368篇
  1999年   343篇
  1998年   295篇
  1997年   282篇
  1996年   237篇
  1995年   222篇
  1994年   188篇
  1993年   177篇
  1992年   159篇
  1991年   98篇
  1990年   69篇
  1989年   54篇
  1988年   56篇
  1987年   28篇
  1986年   27篇
  1985年   20篇
  1984年   8篇
  1983年   3篇
  1982年   9篇
  1981年   9篇
  1980年   9篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1973年   3篇
  1968年   2篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
71.
Unprotected thioglycosides were effective nucleophiles for Ni0‐catalyzed C? S bond‐forming reaction with functionalized (hetero)aryl, alkenyl, and alkynyl halides. The functional‐group tolerance on the electrophilic partner was typically high and the anomeric selectivities of the thioglycosides were high in all cases. The efficiency of this general procedure was well‐demonstrated by the synthesis of 4‐methyl‐7‐thioumbelliferyl‐β‐D ‐cellobioside (MUS‐CB).  相似文献   
72.
Two new silver(I) trans‐cinnamates, namely [Ag(2‐cca)(H2O)]2 ( 1 ) and [Ag(4‐cca)]n ( 2 ) (2‐ccaH = 2‐chlorocinnamic acid and 4‐ccaH = 4‐chlorocinnamic acid), were synthesized and structurally characterized. Single crystal X‐ray studies reveal that each silver(I) atom in 1 is two‐coordinate by a 2‐chlorocinnamate ligand and one water molecule to afford a discrete centrosymmetric dimer with the ligand‐unsupported Ag···Ag interactions (3.218(4) Å), while a pair of symmetry‐related silver(I) atoms in 2 are clamped by two μ2‐η11 4‐chlorocinnamate ligands to yield a binuclear silver(I) moiety incorporating a ligand‐supported Ag···Ag interaction (2.819(5) Å). Both complexes 1 and 2 show potent urease inhibitory activities with the respective IC50 values of 0.66 and 1.10 μM.  相似文献   
73.
Determination of intracellular bioactive species will afford beneficial information related to cell metabolism, signal transduction, cell function, and disease treatment. In this study, the electrochemically reduced graphene oxide modified carbon fiber microdisk electrode (ER‐GOME) was used as a detector of CZE‐electrochemical detection and developed to detect glutathione (GSH). The electrocatalytic activity of the modified microelectrode was characterized by cyclic voltammetry. Under optimized experimental conditions, the concentration linear range of GSH was from 1 to 60 μM. When the S/N ratio was 3, the concentration detection limit was 1 μM. Compared with the unmodified carbon fiber microdisk electrode, the sensitivity was enhanced more than five times. With the use of this method, the average contents of GSH in single HepG2 cells were found to be 7.13 ± 1.11 fmol (n = 10). Compared with gold/mercury amalgam microelectrode, which was usually used in determining GSH, the electrochemically reduced graphene oxide modified carbon fiber microdisk electrode was friendly to environment for free mercury. Furthermore, there were several merits of the novel electrochemical detector coupled with CE, such as comparative repeatability, easy fabrication, and high sensitivity, hold great potential for the single‐cell assay.  相似文献   
74.
A silver-catalyzed reaction of 2-alkynylbenzaldoxime with arylsulfonyl chloride proceeds smoothly at room temperature to afford 4-tosyloxyisoquinolines in moderate to good yields. Additionally, the resulting 4-tosyloxyisoquinolines could be further elaborated through palladium-catalyzed coupling reactions leading to diverse isoquinolines.  相似文献   
75.
Chiral monolithic absorbent is successfully constructed for the first time by using optically active helical‐substituted polyacetylene and graphene oxide (GO). The preparative strategy is facile and straightforward, in which chiral‐substituted acetylene monomer (Ma), cross‐linker (Mb), and alkynylated GO (Mc) undergo copolymerization to form the desired monolithic absorbent in quantitative yield. The resulting monoliths are characterized by circular dichroism, UV–vis absorption, scanning electron microscopy (SEM), FT‐IR, Raman, energy‐dispersive spectrometer (EDS), X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET), XPS, and thermogravimetric analysis (TGA) techniques. The polymer chains derived from Ma form chiral helical structures and thus provide optical activity to the monoliths, while GO sheets contribute to the formation of porous structures. The porous structure enables the monolithic absorbents to demonstrate a large swelling ratio in organic solvents, and more remarkably, the helical polymer chains provide optical activity and further enantio‐differentiating absorption ability. The present study establishes an efficient and versatile methodology for preparing novel functional materials, in particular monolithic chiral materials based on substituted polyacetylene and GO.

  相似文献   

76.
77.
Syntheses of N-heterocyclic compounds that permit a flexible introduction of various substitution patterns by using inexpensive and diversely available starting materials are highly desirable. Easy to handle and reusable catalysts based on earth-abundant metals are especially attractive for these syntheses. We report here on the synthesis of 3,4-dihydro-2H-pyrroles via the hydrogenation and cyclization of nitro ketones. The latter are easily accessible from three components: a ketone, an aldehyde and a nitroalkane. Our reaction has a broad scope and 23 of the 33 products synthesized are compounds which have not yet been reported. The key to the general hydrogenation/cyclization reaction is a highly active, selective and reusable nickel catalyst, which was identified from a library of 24 earth-abundant metal catalysts.  相似文献   
78.
Multivalent ion storage and aqueous electrochemical systems continue to build interest for energy application. The Zn-ion system with 2 electron transfer and an ideal metal anode is a strong candidate but is still at the early stage of development. Using both in situ near-edge (XANES) and X-ray absorption fine structure spectroscopy, EXAFS, a nanostructured cathode material, CaxV2O5-H2O (CVO), was probed at the V-K absorption edge. This operando study reveals the local electronic and geometric structure changes for CVO during galvanostatic cycling as the active material in an aqueous Zn-ion cell. The XANES data provides a fine resolution to track the evolution of the vanadium oxidative state and near-neighbor coordination sphere showing subtle shifts and delocalized charge. The Zn-ion influence on the V-K absorption edge is visualized using a difference technique called Δμ. Coupled with theoretical calculations and modelling, the extended region extracted local bonding information further confirms excellent electronic and structural reversibility of this vanadium oxide bronze in an aqueous Zn-ion electrochemical cell.  相似文献   
79.
Fabrication of bioactive nanomaterials with improved stability and low toxicity towards healthy mammalian cells have recently been a topic of interest. Bioactive metal nanomaterials such as silver nanoparticles (AgNPs) tend to lose their stability with time and become toxic to some extent, limiting their biological applications. AgNPs were separately encapsulated and loaded on the surface of a biocompatible polydopamine (PDA) to produce Ag-PDA and Ag@PDA nanocomposites to unravel the issue of agglomeration. PDA was coated through the self-polymerization of dopamine on the surface of AgNPs to produce Ag-PDA core-shells nanocomposites. For Ag@PDA, PDA spheres were first designed through self-polymerization of dopamine followed by in situ reduction of silver nitrate (AgNO3) without any reductant. AgNPs sizes were controlled by varying the concentration of AgNO3. The TEM micrograms showed monodispersed PDA spheres with an average diameter of 238 nm for Ag-PDA and Ag@PDA nanocomposites. Compared to Ag@PDA, Ag-PDA nanocomposites have shown insignificant toxicity towards human embryonic kidney (HEK-293T) and human dermal fibroblasts (HDF) cells with cell viability of over 95% at concentration of 250 µg/mL. A excellent antimicrobial activity of the nanocomposites was observed; with Ag@PDA possessing bactericidal effect at concentration as low as 12.5 µg/mL. Ag-PDA on the other hand were only found to be bacteriostatic against gram-positive and gram-negative bacteria was also observed.  相似文献   
80.
We have investigated the effective utilization potential of carbon nanomaterials in the field of pour point depressants, and reported three kind of carbon-based hybrid nano-pour-point depressants with different dimensions. In this paper, poly-α-olefins-acrylate high-carbon ester pour point depressant (PAA-18) was prepared by esterification and polymerization as the basic pour point depressant. Then, the basic pour point depressant PAA18 was modified by solvothermal method with graphene oxide (GO), carbon nanospheres (Cna) and carbon nanotubes (OCNTs). The morphology and structure of the composites were analyzed by SEM, FTIR and XRD. The results showed that PAA18 was successfully in situ polymerized on GO, Cna and OCNTs. We took the simulated oil as the experimental object, and evaluated its pour point, rheological properties and wax crystal morphology, and achieved excellent results. In the three carbon-based hybrid nano-pour-point depressants with different carbon contents, the oxidation carbon nanotubes composite pour point depressant (PAA18-1 % OCNTs) with carbon content of 1 % had the best pour point and viscosity reduction effect when the dosage was 1250 ppm, which could make the pour point of the simulated oil containing wax decrease by 16 °C. PAA18-1 % OCNTs reduced the pour point by 5 °C more than PAA18. This paper provides reference for the application of carbon nanomaterials in the field of pour point depressant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号