首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   63篇
  国内免费   35篇
化学   439篇
综合类   1篇
物理学   11篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   19篇
  2019年   18篇
  2018年   22篇
  2017年   23篇
  2016年   38篇
  2015年   24篇
  2014年   31篇
  2013年   60篇
  2012年   35篇
  2011年   29篇
  2010年   25篇
  2009年   19篇
  2008年   13篇
  2007年   12篇
  2006年   19篇
  2005年   10篇
  2004年   3篇
  2003年   8篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1989年   2篇
排序方式: 共有451条查询结果,搜索用时 31 毫秒
61.
We carried out the thermal curing of the copolymers of N-allylmaleimide (AMI) and 2-ethylhexyl acrylate (2EHA) using 1,3,4,6-tetra(2-mercaproethyl)glycoluril ( G1 ), 1,3,4,6-tetra(3-mercaptopropyl)glycoluril ( G2 ), 1,3,4,6-tetraallylglycoluril ( G3 ), triallylisocyanurate (TAIC), and pentaerythritol tetrakis(3-mercaptobutyrate) (PEMB) as the crosslinkers. Based on the results for the analysis of thiol–ene reactions monitored by IR spectroscopy, it was confirmed that the curing rate significantly depended on the combination of the used crosslinkers. The insoluble fraction after curing was more than 90% for the systems using the glycoluril crosslinkers, while the conversion of the allyl groups was suppressed due to the rigid structure of these crosslinkers. The heat resistance and the mechanical properties of the crosslinked polymers were investigated by thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and mechanical tensile tests. For the products cured using the glycoluril crosslinkers, the glass transition temperature (Tg) and the maximum temperature of thermal decomposition (Tmax) were 54–59 °C and 395–409 °C, respectively, being higher than those for the cured product prepared with PEMB and TAIC as the conventional crosslinkers. The elasticity (75–139 MPa), the maximum strength (3.0–4.1 MPa), and the adhesion strength (6.7–10.7 MPa) for the polymers cured with the glycoluril crosslinkers, determined by the mechanical tensile and single lap-shear adhesion tests, were higher than those for cured materials produced with PEMB. Thus, the thermal and mechanical properties of the maleimide copolymers were efficiently enhanced by crosslinking using the rigid glycoluril compounds. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 923–931  相似文献   
62.
A novel, straightforward and versatile chemical pathway has been studied to functionalize water‐soluble chitosan oligomers. This metal‐free methodology is based on the epoxy‐amine reaction of the allyl glycidyl ether with chitosan, followed by thiol‐ene radical coupling reaction of ω‐functional mercaptans, using 4,4′‐Azobis(4‐cyanovaleric acid) as a free radical initiator. Both reactions were entirely carried out in water. In a preliminary step, chitosan depolymerization was carried out using H2O2 in an acetic medium under 100 W microwave irradiation, optimizing the yield of water‐soluble oligomers. Functionalization by six different thiols bearing alcohol, carboxylic acid, ester, and amino groups was then performed, leading to a range of functional oligochitosans with different grafting efficiencies. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 39–48  相似文献   
63.
铜(Cu)含量的高低直接影响着生命体的正常运转和自然体系的平衡.检测铜离子的方法多种多样,其中具有较高敏感度和选择性的荧光化学传感器应用更加广泛.综述了以Cu^2+为基的荧光化学传感器通过"替换"法实现了对阴离子S^2-, CN^-, H2PO4^-, PPi和I^-以及中性分子ATP、ADP和生物硫醇等的连续识别的研究进展.  相似文献   
64.
A method for the determination of lead is described using thiol-functionalized gold nanoparticle. The detection method is based on the prevention of thiol-induced aggregation of gold nanoparticles by lead. Among six thiols, e.g., 4-mercapto-1-butanol, meso-2, 3-dimercaptosuccinic acid, mercaptosuccinic acid, 6-mercapto-1-hexanol, 4-(methylthio)-1-butanol, 1-propanethiol, four (4-mercapto-1-butanol, 6-mercapto-1-hexanol, 4-(methylthio)-1-butanol and 1-propanethiol) induced the aggregation of the gold nanoparticles which was measured by the change in absorbance at 520 and 650?nm. Prior incubation of the gold nanoparticles with lead decreased the 4-(methylthio)-1-butanol-induced aggregation of gold nanoparticles in a dose-dependent manner. A linear inverse relationship between the logarithmic concentration of lead and the ratio of absorbance at 650 to 520 was noted. The method has a dynamic range from 10?nM to 100?µM. However, metals such as mercury and chromium were more effective in comparison with lead in preventing the 4-methylthio-1-butanol-induced aggregation of gold nanoparticles. The method can be used for assessing the heavy metal load in water samples.  相似文献   
65.
The glycosylation of cell‐penetrating poly(disulfide)s (CPDs) is introduced to increase the solubility of classical CPDs and to achieve multifunctional cellular uptake. With the recently developed sidechain engineering, CPDs decorated with α‐d ‐glucose (Glu), β‐d ‐galactose (Gal), d ‐trehalose (Tre), and triethyleneglycol (TEG) were readily accessible. Confocal laser scanning microscopy images of HeLa Kyoto cells incubated with the new CPDs at 2.5 μm revealed efficient uptake into cytosol and nucleoli of all glycosylated CPDs, whereas the original CPDs and TEGylated CPDs showed much precipitation into fluorescent aggregates at these high concentrations. Flow cytometry analysis identified Glu‐CPDs as most active, closely followed by Gal‐CPDs and Tre‐CPDs, and all clearly more active than non‐glycosylated CPDs. In the MTT assay, all glyco‐CPDs were non‐toxic at concentrations as high as 2.5 μm . Consistent with thiol‐mediated uptake, glycosylated CPDs remained dependent on thiols on the cell surface for dynamic covalent exchange, their removal with Ellman's reagent DTNB efficiently inhibited uptake. Multifunctionality was demonstrated by inhibition of Glu‐CPDs with d ‐glucose (IC50 ca. 20 mm ). Insensitivity toward l ‐glucose and d ‐galactose and insensitivity of conventional CPDs toward d ‐glucose supported that glucose‐mediated uptake of the multifunctional Glu‐CPDs involves selective recognition by glucose receptors at the cell surface. Weaker but significant sensitivity of Gal‐CPDs toward d ‐galactose but not d ‐glucose was noted (IC50 ca. 110 mm ). Biotinylation of Glu‐CPDs resulted in the efficient delivery of streptavidin together with a fluorescent model substrate. Protein delivery with Glu‐CPDs was more efficient than with conventional CPDs and remained sensitive to DTNB and d ‐glucose, i.e., multifunctional.  相似文献   
66.
67.
Palladium(II) complexes are generally reactive toward substitution/reduction, and their biological applications are seldom explored. A new series of palladium(II) N‐heterocyclic carbene (NHC) complexes that are stable in the presence of biological thiols are reported. A representative complex, [Pd(C^N^N)(N,N′‐nBu2NHC)](CF3SO3) ( Pd1 d , HC^N^N=6‐phenyl‐2,2′‐bipyridine, N,N′‐nBu2NHC=N,N′‐di‐n‐butylimidazolylidene), displays potent killing activity toward cancer cell lines (IC50=0.09–0.5 μm ) but is less cytotoxic toward a normal human fibroblast cell line (CCD‐19Lu, IC50=11.8 μm ). In vivo anticancer studies revealed that Pd1 d significantly inhibited tumor growth in a nude mice model. Proteomics data and in vitro biochemical assays reveal that Pd1 d exerts anticancer effects, including inhibition of an epidermal growth factor receptor pathway, induction of mitochondrial dysfunction, and antiangiogenic activity to endothelial cells.  相似文献   
68.
Tzy-Ming Lu 《Tetrahedron letters》2007,48(31):5415-5419
Two novel carbonic acid esters conjugated with oligomeric phenyl glycosides have been isolated and characterized from the wood of Rhamnus nakaharai. The structures are characterized as 5,7-dihydroxyphthalide 5-O-β-[6-O-{3″-methoxy-4″-O-β-[6?-O-(4?-O-carboxy-3?,5?-dimethoxy)phenyl]glucopyranosyl}phenyl]glucopyranoside (1) and 6-O-{3′-methoxy-4′-O-β-[6″-O-(3?-mercapto-5?-methoxy-4?-O-methylcarboxy)phenyl]glucopyranosyl}phenyl β-glucopyranose (2), namely, rhamnakoside A (1) and B (2), all by NMR and other spectral methods, respectively. They could be a novel case of phase II detoxification products and biogenetic diversity in plant kingdom.  相似文献   
69.
Monolayers of alkanethiols with varied chain lengths, CH3(CH2)nSH where n = 3, 5, and 7, on gold substrates have been prepared by adsorption from (1) neat thiol, (2) millimolar thiol solution in alcohol (conventional method), and (3) potential-controlled adsorption. Reflection absorption infrared spectroscopy (RAIRS) and electrochemical quartz crystal microbalance (EQCM) have been used to characterize the integrity of the monolayers. Methylene and methyl stretching modes along with C–S stretching modes have been used as benchmarks to follow the order–disorder transitions in the monolayer structure, in the temperature range from 25 to 175 °C. Monolayers adsorbed from neat thiol show superior quality in terms of stability and structural arrangement. Short chain thiols with n = 3, 5, and 7 do show substantial stability. The possibility of multilayer formation is ruled out by EQCM studies comparing the frequency and mass change associated with the monolayer desorption. Self-assembled monolayers (SAMs) adsorbed under potential control behave very similarly to the monolayers adsorbed from neat thiol as far as stability and structural orientation are concerned, irrespective of the chain length. The adsorption from neat thiol gets rid of the solvent-induced defects and arrests the propagation of defects under temperature constraints.  相似文献   
70.
An attempt was made to quantitatively describe the binding of phenylarsenic species to thiol-containing biomolecules using electrospray ionization mass spectrometry (ESI-MS). The extent of the reactions of phenylarsine oxide (PAO) with the peptides glutathione and isotocin (ITC) and with the protein thioredoxin resulting in covalent As--S bonds were quantified by deriving the dependence of the corresponding ion signal intensities on the concentration of the reaction products. Problems complicating a quantitative evaluation of the mass spectra, such as signal suppression effects, were critically evaluated. Equilibrium constants for condensation reactions as well as formation constants for noncovalent associations were calculated by means of ESI-MS signal intensities. The comparison of the reaction of PAO with different thiol reactants revealed the highest binding affinity for ITC followed by thioredoxin and a lower affinity to glutathione. Possibly, the intramolecular formation of RS-As(C(6)H(5))-SR occurring in case of ITC and thioredoxin is favored over the intermolecular product involving two molecules glutathione even though the molecular mass of glutathione (307 g mol(-1)) is much smaller than that of ITC (966 g mol(-1)) and thioredoxin (11 688 g mol(-1)). A similar binding affinity for trivalent (K approximately 1.6 x 10(-3) l micromol(-1)) and pentavalent (K approximately 1.6 x 10(-3) and 1.0 x 10(-3) l micromol(-1)) arsenic species was found for the formation of a noncovalent complex of glutathione with different phenylarsenic compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号