首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   571篇
  免费   15篇
  国内免费   70篇
化学   629篇
晶体学   1篇
数学   2篇
物理学   24篇
  2024年   2篇
  2023年   51篇
  2022年   11篇
  2021年   17篇
  2020年   19篇
  2019年   14篇
  2018年   19篇
  2017年   18篇
  2016年   12篇
  2015年   15篇
  2014年   25篇
  2013年   18篇
  2012年   18篇
  2011年   46篇
  2010年   30篇
  2009年   42篇
  2008年   23篇
  2007年   29篇
  2006年   29篇
  2005年   35篇
  2004年   24篇
  2003年   19篇
  2002年   11篇
  2001年   9篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   11篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   8篇
  1992年   5篇
  1991年   8篇
  1990年   6篇
  1989年   10篇
  1988年   6篇
  1987年   5篇
  1986年   7篇
  1985年   10篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
排序方式: 共有656条查询结果,搜索用时 31 毫秒
651.
652.
Whereas synthetically catalyzed nitrogen reduction (N2R) to produce ammonia is widely studied, catalysis to instead produce hydrazine (N2H4) has received less attention despite its considerable mechanistic interest. Herein, we disclose that irradiation of a tris(phosphine)borane (P3B) Fe catalyst, P3BFe+, significantly alters its product profile to increase N2H4 versus NH3; P3BFe+ is otherwise known to be highly selective for NH3. We posit a key terminal hydrazido intermediate, P3BFe=NNH2, as selectivity-determining. Whereas its singlet ground state undergoes protonation to liberate NH3, a low-lying triplet excited state leads to reactivity at Nα and formation of N2H4. Associated electrochemical and spectroscopic studies establish that N2H4 lies along a unique product pathway; NH3 is not produced from N2H4. Our findings are distinct from the canonical mechanism for hydrazine formation, which proceeds via a diazene (HN=NH) intermediate and showcase light as a tool to tailor selectivity.  相似文献   
653.
De novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold. Spectroscopic, thermodynamic, and functional characterization revealed that DR1 recapitulates the T3 copper site, supporting different copper redox states, and being active in the O2-dependent oxidation of catechols to o-quinones. Careful design of the residues lining the substrate access site endows DR1 with substrate recognition, as revealed by Hammet analysis and computational studies on substituted catechols. This study represents a premier example in the construction of a functional T3 copper site into a designed four-helix bundle protein.  相似文献   
654.
Late-Stage Functionalisation (LSF) is an innovative technique that has been successfully applied to the C−H diversification of pharmaceuticals. However, LSF of the pyridine ring in drug-like molecules is often unselective. As a result, a mixture of structurally related products is obtained, thus making the purification tedious and time-consuming. This review shines a light on recent strategies addressing the selectivity issue in the LSF of complex natural products or drugs containing the pyridine moiety. Specifically, we have reviewed the efforts reported both in academia and industries with the hope of providing a guide for the LSF of elaborated pyridines.  相似文献   
655.
Bioorthogonal chemistry is a promising toolbox for dissecting biological processes in the native environment. Recently, bioorthogonal reactions have attracted considerable attention in the medical field for treating diseases, since this approach may lead to improved drug efficacy and reduced side effects via in situ drug synthesis. For precise biomedical applications, it is a prerequisite that the reactions should occur in the right locations and on the appropriate therapeutic targets. In this minireview, we highlight the design and development of targeted bioorthogonal reactions for precise medical treatment. First, we compile recent strategies for achieving target-specific bioorthogonal reactions. Further, we emphasize their application for the precise treatment of different therapeutic targets. Finally, a perspective is provided on the challenges and future directions of this emerging field for safe, efficient, and translatable disease treatment.  相似文献   
656.
Developing porous sorbents represents a potential energy-efficient way for industrial gas separation. However, a bottleneck for reducing the energy penalty is the trade-off between dynamic adsorption capacity and selectivity. Herein, we showed this problem can be overcome by modulating the kinetic and thermodynamic separation behaviours in metal–organic frameworks for sieving 2-butene geometric isomers, which are desired for upgrading the raffinates to higher value-added end products. We found that the iron-triazolate framework can realize the selective shape screening of 2-butene isomers assisted by electrostatic interactions at the pore apertures. Further introducing uncoordinated N binding sites by ligand substitution lowered the gas diffusion barrier and greatly boosted the dynamic separation performance. In breakthrough tests under ambient conditions, trans-2-C4H8 can be efficiently separated from cis-2-C4H8 with a record capacity of 2.10 mmol g−1 with high dynamic selectivity of 2.39.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号