首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4426篇
  免费   287篇
  国内免费   1091篇
化学   5051篇
晶体学   16篇
力学   148篇
综合类   44篇
数学   67篇
物理学   478篇
  2024年   21篇
  2023年   53篇
  2022年   158篇
  2021年   183篇
  2020年   201篇
  2019年   140篇
  2018年   110篇
  2017年   134篇
  2016年   179篇
  2015年   154篇
  2014年   173篇
  2013年   273篇
  2012年   319篇
  2011年   210篇
  2010年   230篇
  2009年   305篇
  2008年   429篇
  2007年   274篇
  2006年   303篇
  2005年   270篇
  2004年   226篇
  2003年   194篇
  2002年   140篇
  2001年   131篇
  2000年   139篇
  1999年   107篇
  1998年   106篇
  1997年   101篇
  1996年   105篇
  1995年   85篇
  1994年   82篇
  1993年   84篇
  1992年   51篇
  1991年   33篇
  1990年   23篇
  1989年   22篇
  1988年   14篇
  1987年   16篇
  1986年   8篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
  1971年   1篇
排序方式: 共有5804条查询结果,搜索用时 15 毫秒
991.
The interaction of steam with phosphoric acid imbibed electrolyte composed of PBI/PPy(50)coPSF 50/50 polymer blend and its effect on fuel cell performance was studied regarding its permeability through and its chemical interaction with the membrane. It was found that steam is the only gas that permeates the membrane with a permeability coefficient 1.1 × 10−14 mol cm cm−2 s−1 Pa−1 at 150 °C. This is attributed either to the high solubility of water in phosphoric acid or to the chemical interaction with pyrophosphoric acid. The latter was demonstrated by carrying out TGA experiments under various water vapor partial pressures. Water reacts with pyrophosphoric acid in order to maintain the equilibrium concentration of phosphoric acid at high level, thus improving proton conductivity and fuel cell performance. In addition it is shown that excess water dissolves in the membrane thus maintaining the “membrane/acid” system at high hydration level. This depends both on temperature and steam partial pressure. Although in the present study it is shown that steam plays a significant role in the performance of the high temperature Polymer electrolyte membrane (PEM) fuel cell, nevertheless its feed with humidified gases is not necessary, due to the back transport of the water produced at the cathode.  相似文献   
992.
An electrochemical method for proton transport visualization was developed and applied to the investigation of proton-conducting membrane materials. The method employs the change in the visual appearance of chemo-chromic tungsten oxide WO3 in the presence of atomic hydrogen. An all-solid electrochemical cell arranged by substituting a fuel cell cathode with a thin film of WO3-electrode was built and shown to generate both optical and electrical response to hydrogen gas exposure. The design of the cell was extended to a high throughput screening system that was utilized to characterize proton transport properties of samples, including a number of new compounds synthesized in-house by sol–gel wet chemistry. Non-destructive introduction of superacidic groups promoting proton hopping in the membrane materials was achieved by photodecomposition of a photoacid generator just after membrane casting. A model quantitatively describing current–voltage relation in the cell was developed and successfully applied to derive area-specific resistance of proton-conductive membranes from the experimental results. Area-specific resistances of membranes are derived from the slopes of optically reconstructed voltage–current curves. Sensitivity and dynamic range of the screening method are discussed.  相似文献   
993.
As a kind of natural protein, wool keratin was used to improve the cell affinity of poly(l-lactic acid) (PLLA). After small keratin particles were prepared from keratin solution by spray-drying process, they were blended with PLLA solution. PLLA/keratin nonwoven fibrous membrane was produced by electrospinning the blend solutions. The release rate of keratin from the composite membrane was detected by Fourier transform infrared (FTIR) after PLLA/keratin membranes were degraded in PBS up to 4 weeks. The chemical compositions of the PLLA/keratin surface were examined by X-ray photoelectron spectroscope. Although more than half of the keratin was removed from PLLA/keratin membrane during the first few hours of degradation, some keratin particles were still embedded in the PLLA fibers. Osteoblast cells were used to evaluate the cellular behaviors of the composite membrane. After 7 days culturing, more cells were observed on PLLA/keratin membranes than on pure PLLA membranes. MTT assay and alkaline phosphatase (ALP) activity results suggested that keratin could improve the interactions between osteoblast cells and the polymeric membranes.  相似文献   
994.
The objective of this study was to evaluate the performance of a photocatalysis/H2O2/metal membrane hybrid system in the degradation of humic acid. A metal membrane of nominal pore size 0.5 μm was used in the experiment for separation of TiO2 particles. Hydrogen peroxide was tested as an oxidant. The efficiency of removal of CODCr and color increased rapidly for initial hydrogen peroxide concentrations up to 50 mg L−1. The efficiency of removal of CODCr and color by 50 mg L−1 initial hydrogen peroxide concentration was approximately 95 and 98%, respectively. However, addition of hydrogen peroxide over 50 mg L−1 inhibited the efficiency of the system. Addition of hydrogen peroxide to a UV/TiO2 system enhanced efficiency of removal of CODCr and color compared with no addition of hydrogen peroxide. This may be ascribed to capture electrons ejected from TiO2 and to the production of OH radicals. Application of the metal membrane in the UV/TiO2/H2O2 system enhanced the efficiency of removal of CODCr and color because of adsorption by the metal membrane surface and the production of OH radicals. By application of a metal membrane with a nominal pore size of 0.5 μm, TiO2 particles were effectively separated from the treated water by metal membrane rejection. The photocatalytic metal membrane had much less resistance than the humic acid, TiO2, and humic acid/TiO2 because of the degradation of humic acid by the photocatalytic reaction.  相似文献   
995.
Three kinds of derivatives of the M1 factor of virginiamycin have been synthesised: esters with long chain fatty acids, oximes with modified polar amino acids and bis-derivatives with both the ester and oxime function. The study of the surface tension time dependence of M1 and its derivatives has shown that it is necessary to enhance simultaneously the hydrophobicity and the hydrophilicity of M1 to render M1 surface-active. A structure/function relationship study of the surface-active bis-derivatives has shown that enhancing the hydrophobicity of the molecule led to slower adsorption kinetics, higher stability of the monolayers formed and a better capacity to penetrate a membrane model. The repulsive electrostatic forces due to the presence of charges on the amino acids linked to M1 lead to higher surface tensions, a greater molecular area at the interface and lower penetration into a membrane model.This study has demonstrated that modifying systematically the hydrophobicity and hydrophilicity of a non surface-active molecule allows the production of surface-active derivatives.  相似文献   
996.
通过在磺化聚醚醚酮(SPEEK,DS=61.68%)中分别混入酚酞型聚醚砜(PES-C)、磺化酚酞型聚醚砜(SPES-C,DS=53.7%)制备出SPEEK/PES-C、SPEEK/SPES-C共混质子交换膜.结果表明,共混的两种聚合物之间均具有较好的相容性.PES-C、SPES-C的混入能有效降低膜的溶胀及甲醇透过,且随着共混量的增加,这种作用越趋明显.纯SPEEK膜在75℃左右溶解,而SPEEK/PES-C(30wt%)、SPEEK/SPES-C(30wt%)共混膜在80℃时溶胀度仅为22.5%、26.32%.在室温至80℃范围内,纯SPEEK及共混膜的甲醇透过系数都在10-7cm2.s-1数量级上,远小于Nafion115膜.在饱和湿度下,温度大于90℃时,SPEEK/PES-C(20wt%)共混膜电导率超过Nafion115膜;温度大于110℃时,SPEEK/SPES-C(30wt%)共混膜电导率与Nafion115膜相当,达到0.11S.cm-1.高电导率,低透醇系数以及明显提高了的可使用温度表明该类共混膜有望在DMFC中使用.  相似文献   
997.
P-mSA/mCS双极膜的制备及其在一价、二价离子分离中的应用   总被引:1,自引:1,他引:0  
以五氧化二磷、磷酸三乙酯和磷酸为反应剂, 制备了磷酸化海藻酸钠(P-SA), 经二茂铁离子改性后作为阳膜层(P-mSA); 用乙酰基二茂铁改性壳聚糖制备了阴膜溶胶(mCS). 将阴膜溶胶流延于阳膜层上, 制备了P-二茂铁-SA/乙酰基二茂铁-CS双极膜(P-mSA/mCS BPM). 测定了双极膜的红外光谱、接触角、电荷密度、离子交换容量与交流阻抗. IR与接触角的分析结果表明, SA经磷酸化后, 亲水性能得到了显著提高. 将P-mSA/mCS BPM应用于一价、二价离子的分离, 当压力差为0.3 MPa时, 二价离子的截留率(双极膜截留的离子百分数)为95%, 一价离子的截留率为22%左右.  相似文献   
998.
采用直流磁控溅射法结合阳极氧化法在铝基纳米点阵上制备氧化钨(WO3)纳米棒. 运用原子力学显微镜(AFM), 电子扫描显微镜(SEM), X射线衍射仪(XRD), 电化学工作站(EW)和紫外-可见分光光度计(UV)观察表征了WO3纳米棒的表面形貌、结构、光学性能和电致变色性能. 结果表明: 在溅射过程中, 溅射粒子优先沉积于铝基纳米点阵的凸点上, 然后成核并形成棒状; WO3纳米棒的直径约为200 nm, 与铝基纳米点阵的直径一致, 拥有一定的电致变色性能.  相似文献   
999.
Hydrogen amplification from simulated hot coke oven gas (HCOG) was investigated in a BaCo0.7Fe0.2Nb0.1O3−δ (BCFNO) membrane reactor combined with a Ru-Ni/Mg(Al)O catalyst by the partial oxidation of hydrocarbon compounds under atmospheric pressure. Under optimized reaction conditions, the dense oxygen permeable membrane had an oxygen permeation flux around 13.3 ml/(cm2·min). By reforming of the toluene and methane, the amount of H2 in the reaction effluent gas was about 2 times more than that of original H2 in simulated HCOG. The Ru-Ni/Mg(Al)O catalyst used in the membrane reactor possessed good catalytic activity and resistance to coking. After the activity test, a small amount of whisker carbon was observed on the used catalyst, and most of them could be removed in the hydrogen-rich atmosphere, implying that the carbon deposition formed on the catalyst might be a reversible process.  相似文献   
1000.
Low temperature routes have been developed for the preparation of BaCe0.9Y0.1O2.95 (BCY10) and BaZr0.9Y0.1O2.95 (BZY10) in the form of nanoparticulate powders for use after densification as ceramic membranes for a proton ceramic fuel cell. These methods make use on the one hand of the chelation of metal (II), (III) and (IV) ions by acrylates (hydrogelation route) and on the other of the destabilisation and precipitation of micro-emulsions. Both routes lead to single phase yttrium doped barium cerate or zirconate perovskites, as observed by X-ray diffraction, after thermal treatment at 900 °C for 4 h for BCY10 and 800 °C for BZY10. These temperatures, lower than those usually used for preparation of barium cerate or zirconate, lead to oxide nanoparticles of size <40 nm. Dense ceramics (?95%) are obtained by sintering BCY10 pellets at 1350 °C and BZY10 pellets at 1500 °C for 10 h. The water uptake of compacted samples at 500 °C is 0.14 wt% for BCY10 and 0.26 wt% for BZY10. Total conductivities in the range 300-600 °C were determined using impedance spectroscopy in a humidified nitrogen atmosphere. The total conductivity was 1.8×10−2 S/cm for BCY10 and 2×10−3 S/cm for BZY10 at 600 °C. The smallest perovskite nanoparticles and highest conductivities were obtained by hydrogelation of precursor barium, zirconium, cerium and yttrium acrylates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号