首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   1篇
  国内免费   7篇
化学   140篇
综合类   4篇
物理学   15篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   9篇
  2010年   2篇
  2009年   5篇
  2008年   10篇
  2007年   11篇
  2006年   16篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
91.
Hydrostatic pressure is a physical factor that can induce stress in organisms. This stress leads to growth inhibition, cellular arrest, and cellular death, and these effects depend on the degree of pressure, temperature, and sensitivity of the organisms to hydrostatic pressure. Genomics studies of yeast cells under conditions recovering from high pressure-induced cellular damage showed evidence that multiprotein complexes or membrane proteins, and not soluble proteins, are the critical targets. We performed a metabolomic analysis. The metabolomics results suggested that membrane-spanning proteins broke down after high pressure treatment and recovery conditions. We also found 13 genes that were common to essential and pressure-induced gene groups. Among these 13 genes, more than 10 were associated with proteasome structure and functions. This suggests that proteasome structure or functions can be the critical target or a highly important factor. This hypothesis is supported by the fact that yeast cells are sensitive to the proteasome inhibitor MG132 after high pressure treatment.  相似文献   
92.
ABSTRACT

We focused on food additives that enhance the effect of high hydrostatic pressure (HHP) treatment for microbial inactivation. We previously isolated Saccharomyces cerevisiae ultraviolet (UV) mutant strain a1210H12 that does not cause a growth delay under specific high pressure treatment conditions. We conceived that it is possible to screen effective food additives in a high-throughput manner by combining strain a1210H12 with a viable cell count method based on liquid culture, named high-throughput microbial pressure inactivation kinetics analysis system (HT-PIKAS). Here, we analyzed the synergistic effect between food additives and HHP treatment on inactivation of strain a1210H12 using HT-PIKAS. We calculated the inactivation rate in the condition of additive only, HHP treatment only and HHP treatment with additive. As a result, four compounds, benzoic acid, sorbic acid, adipic acid and caproic acid, showed high synergistic effects with HHP treatment and could be selected from more than 30 compounds as safe food additives.  相似文献   
93.
Lu C  Li Q  Chen S  Zhao L  Zheng Z 《Talanta》2011,85(1):476-481
In this study, gold nanorods were firstly found to exhibit a tremendously higher catalytic activity towards luminol chemiluminescence (CL) than spherical gold nanoparticles. More importantly, ultra-trace aminothiols can cause a great CL decrease in the gold nanorod-catalyzed luminol system by the formation of Au-S covalent bonds on the ends of gold nanorods. Aminothiols can occupy the active sites of gold nanorods, and further interrupt the generation of the active oxygen intermediates. Other biomolecules including 19 standard amino acids, alcohols, organic acids and saccharides have no effect on gold nanorod-catalyzed luminol CL signals. Moreover, in order to evaluate the applicability and reliability of the proposed method, it was applied to the determination of glutathione in the cell extracts of Saccharomyces cerevisiae. Good agreements were obtained for the determination of glutathione in the cell extracts of S. cerevisiae between the present approach and a standard Alloxan method. The recoveries of glutathione were found to fall in the range between 96 and 105%. The calibration curve for glutathione was found to be linear from 0.05 to 100 nM, and the detection limit (S/N = 3) was 0.01 nM. The relative standard deviation (RSD) for five repeated measurements of 5.0 nM glutathione was 2.1%.  相似文献   
94.
In this paper, we report the results of total internal reflection microscopy investigations of the interaction of two types of microorganisms: Saccharomyces cerevisiae and Escherichia coli with substrates. It is shown that with this method qualitative and quantitative information about cells-substrate interaction can be obtained. One can easily make a difference between attached and non-attached as well as between dead and alive cells, and more generally can follow the dynamics of the process of cells' attachment to substrates. Quantitative information about the cell size and cell-substrate distance is obtained by using a model in which yeast cells and bacteria are approximated by ellipsoids, and multiple reflections of the evanescent waves between the cells and the substrate are neglected.  相似文献   
95.
为研究氧和葡萄糖对pet54基因表达的调控,构建了pet54::lacZ融合基因,用于监测有呼吸的二倍体菌株中pet54基因的表达.实验结果表明氧促进PET54基因表达,葡萄糖阻遏pet54基因表达.  相似文献   
96.
The use of Saccharomyces cerevisiae as a substrate to selectively retain Sn(II) and Sn(IV) has been investigated. Several factors affecting the retention of the analytes by yeast, such as pH, amount of biomass, temperature and time of contact were evaluated. Based on this study, a method for determination of Sn(II) and Sn(IV) combining inductively coupled plasma optical emission spectrometry (ICP OES) and solid phase extraction using Saccharomyces cerevisiae is proposed. The procedure consists of the selective retention of Sn(IV) by yeast at pH = 2.0 while Sn(II) remains in solution. Determination of tin in the solid phase was easily carried out by submitting a slurry of the yeast (0.5 g/40 mL) directly to ICP OES. The precision of the extraction procedure was characterized by an RSD lower than 4%. The detection limits of tin (3σ) in the solid phase and the liquid phase were 1.1 and 0.7 μg L−1, respectively. The proposed approach was evaluated for determination of Sn(II) and Sn(IV) in spiked river water and real samples of industrial waste water (untreated and treated). For all samples, recoveries of spiked Sn(II) and Sn(IV) were between 85 and 112%.  相似文献   
97.
An open-pore agar matrix has been shown to be suitable for the entrapment of microbial whole cells required for use in reactions that involve cell growth and gas evolution. Beads of porous agar with entrapped yeast cells have been used for the continuous fermentation of sugar cane molasses to ethanol, without apparent bead rupture, even after periods of 3 mo of use. The agar gel does not erode during prolonged operation, unlike porous gelatin cross-linked with glutaraldehyde.  相似文献   
98.
The possibility of producing the biologically active material of the skin, ceramide, was studied using yeasts. The yeast strain that produced the most ceramide, Saccharomyces cerevisiae (KCCM 50515), was selected, and the optimal conditions for ceramide production were determined using shakeflask culture and batch fermentation. By measuring the production rate of ceramide at various pH values and temperatures, the optimal conditions for ceramide production were found to be pH 6.0 and 30°C. When heat shock was applied to the cells for 1 h by increasing the culture temperature from 30 to 40°C after cell growth, the amount of ceramide produced was increased 5.9-fold. A cell growth and ceramide production model was developed with Monod kinetics and the Leudecking-Piret model. It showed that ceramide production was increased when the cells were in the stationary phase.  相似文献   
99.
Total glycolipid content of Saccharomyces cerevisiae cells increased in ethanol-treated yeast cells. Sialic acid and hexosamine contents of glycolipids from ethanol-treated cells decreased, whereas those of hexoses increased. Increased sialidase activity in the presence of ethanol may be responsible for the decrease in sialic acid content of glycolipids. The saccharide moieties of glycolipids of S. cerevisiae consisted of fucose, mannose, galactose, and glucose. Ethanol treatment of yeast cells caused an increase in glucose and a decrease in galactose content of glycolipids. The changes in glucose content can be related to changes in β-glucosidase activity under alcohol stress. The content of cerebrosides, sulfatides, and monoglucosyldiglycerides was enhanced following ethanol treatment. An increase in cerebroside as well as in sulfatide content during alcohol stress might play an important role in stabilizing the membrane both physically and structurally. Such variations in glycolipid content and composition of S. cerevisiae cells may represent an adaptive response to ethanol stress.  相似文献   
100.
This work describes a mediated amperometric method for simultaneous real-time probing of the NAD(P)H availability in two different phenotypes, fermentative and respiratory, of the phosphoglucose isomerase deletion mutant strain of S. cerevisiae, EBY44 [ENY.WA-1A pgi1-1D::URA3], and its parental strain, ENY.WA-1A. The developed method is based on multichannel detection using microelectrode arrays. Its versatility was demonstrated by using four microelectrode arrays for simultaneously monitoring the NAD(P)H availability of both geno- and phenotypes under the influence of two different carbon sources, glucose and fructose, as well as the cytosolic and mitochondrial inhibitor and uncoupler, dicoumarol. The obtained results indicate that the method is capable of accurately and reproducibly (overall relative standard error of mean 3.2%) mapping the real-time responses of the cells with different genotype–phenotype combinations. The ENY.WA cells showed the same response to glucose and fructose when dicoumarol was used; fermentative cells indicated the presence of cytosolic inhibition and respiratory cells a net effect of mitochondrial uncoupling. EBY44 cells showed cytosolic inhibition with the exception of respiratory cells when fructose was used as carbon source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号