首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   48篇
  国内免费   34篇
化学   476篇
晶体学   2篇
力学   1篇
物理学   75篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   13篇
  2019年   9篇
  2018年   20篇
  2017年   16篇
  2016年   22篇
  2015年   16篇
  2014年   14篇
  2013年   49篇
  2012年   20篇
  2011年   19篇
  2010年   34篇
  2009年   29篇
  2008年   26篇
  2007年   29篇
  2006年   26篇
  2005年   24篇
  2004年   25篇
  2003年   24篇
  2002年   16篇
  2001年   13篇
  2000年   11篇
  1999年   10篇
  1998年   11篇
  1997年   11篇
  1996年   10篇
  1995年   5篇
  1994年   6篇
  1993年   9篇
  1992年   5篇
  1991年   6篇
  1990年   6篇
  1985年   1篇
  1984年   1篇
  1981年   4篇
排序方式: 共有554条查询结果,搜索用时 15 毫秒
211.
Human serum albumin (HSA) introduced to the fibers produced by electrospinning from HSA and polycaprolactone (PCL) solutions in hexafluoroisopropanol has been studied in terms of its structure, release from the fibers, stability of interaction with basic polymer, accessibility for protease attack, and cellular receptors, as well as dependence of the studied parameters on the protein concentration in fibers. A limited part of the protein leaves the fibers right after soaking with water, whereas the remaining protein stays tightly bound to fibers for a long time because protein nanoparticles are tightly integrated with PCL, as shown by small‐angle X‐ray scattering. As has been demonstrated, the proteins leave the fibers in complexes with PCL. X‐ray photoelectron spectroscopy demonstrates that the protein concentration on the fiber surface is higher than the concentration in electrospinning solution. The surface‐exposed protein is recognized by cell receptors and is partially hydrolyzed by proteinase K. The data on pulse protein release, presence of PCL in the protein released from matrixes, overrepresentation of the protein on the fiber surface, and tight interaction of protein with PCL may be useful for rational design of electrospun scaffolds intended for drug delivery and tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
212.
Highly crosslinked copolymers of 1‐vinyl‐2‐pyrrolidone (VP) were obtained in the form of microspheres by combined suspension–emulsion polymerization. The porous structure of the copolymers was created by the use of proper diluents. The main parameters of porous structure were established in the dry and wet states. Three methods: inverse size‐exclusion chromatography (ISEC), nitrogen adsorption, and small X‐ray scattering (SAXS) were used in porous structure investigations. It was shown that the determined parameters strongly depend on the chosen method and the microspheres can be used as packing materials in chromatography. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
213.
The heterogeneous precipitate microstructure of a AA2050 Al–Li–Cu in the T8 state after friction stir welding has been mapped by small-angle X-ray scattering (SAXS). 2D resolved maps of the fraction and size of both T1 platelets precipitates and clusters/GP zones formed at room temperature are provided. TEM micrographs of selected zone confirm the interpretation of SAXS intensities. This microstructure mapping is compared to microhardness mapping and a direct correlation is shown. Short duration heat treatments made in a salt bath help understanding precipitate stability and suggest that the temperature exploration alone explains to a large extent the distribution of the precipitates microstructure across the welded structure.  相似文献   
214.
Summary: The crystalline structure and phase morphology of linear, branched polyethylenes and their blends during crystallization and subsequent melting were investigated, using a combination of differential scanning calorimetry (DSC), and synchrotron small angle X-ray scattering (SAXS). A linear polyethylene (PE1) with weight-average molecular weight (Mw) of 114 000 g/mol, and two branched polyethylene copolymers, containing 4.8 mol% (PE4) and 15.3 mol% (PE10) hexane, with molecular weights of 93 000 g/mol and 46 000 g/mol were used as pure samples. Two blends, PE1-4 and PE1-10, each with a weight ratio of 50/50, were prepared by solution blending. Our results indicate that in PE4 a phase separation within the branched component itself occurred, forming a broad distribution of lamellar thicknesses during the crystallization process. PE10 on the other hand did hardly crystallize because of the high degree of branching. Co-crystallization of both components took place in blend PE1-4 and liquid-liquid phase separation occurred in the melt of PE1-10. Morphological parameters were determined by using Bragg's law and the correlation function, respectively. The detected semicrystalline morphology can be well described by the lamellar insertion mode where thin lamellae develop between thicker primary lamellae. During subsequent heating, lamellae melted in the reversed sequence of their formation. The evolution of the structural parameters as a function of temperature revealed that surface melting began at first, and then the complete melting of stacks occurred until the final melting temperature was reached.  相似文献   
215.
The effect of length scale of triblock oil-soluble polymer (poly (ε-caprolactone)–poly butadiene-poly (ε-caprolactone)) (PCL-PB-PCL) on the properties of a water-in-oil (W/O) droplet microemulsion (R ~ 5.5 nm) has been studied as a function of the amount of added telechelic polymer. Small-angle X-ray scattering (SAXS) measurements show that the size of the droplets is not affected by the polymer addition but it induces attractive interactions at low concentration and repulsive ones at high polymer content. Measurements of the diffusion coefficient by dynamic light scattering (DLS) show different relaxations in mixed systems. The fast diffusion coefficient increases with increase in polymer concentration. At higher polymer content, the network formation leads to an additional slow relaxation mode in DLS that can be related to the formation of clusters of microemulsion droplets interconnected by the polymer. The collective diffusion of slow relaxations decreases with increase of polymer concentrations.  相似文献   
216.
We study the effect of polyethylene glycol (PEG) on the dynamic and structure of water droplets at the reverse sodium bis-(2-ethylhexyl) sulfosuccinate (AOT) microemulsion. The mixture of water and oil with anionic surfactant AOT can form microemulsion. The dynamic of microemulsion in the presence of PEG is investigated by photon correlation spectroscopy technique. We mainly focus on the variation of the translational diffusion behaviour as a function of the polymer concentration and polymer length scale. By increasing the content of the lowest PEG length scale (Mn = 285), the dynamic of microemulsion slows down. In addition, one relaxation process is distinguished for all polymer concentration. However, for the two higher polymer length scale (Mn = 2200 and 6000), two relaxations are observed and the dynamic of microemulsion speeds up. We used the small angle X-ray scattering technique to monitor the size and the polydispersity of the mixture system (AOT microemulsion/PEG).  相似文献   
217.
Abstract

C60 molecules were embedded in the pores of a zeolite FSM-16 by using a liquid phase method. The shift of photoluminescence spectra of C60 solid embedded in FSM-16 was discussed using data of ESR, PDS and SAXS.  相似文献   
218.
Polyvinylidene fluoride (PVDF) is a crystalline polymer known for its multiple crystalline phases. When elongated at room temperature before necking, the nucleation and growth of micro-voids is a major process. No phase transition was observed. In this paper, micromechanisms of deformation are studied and linked to the macroscopic mechanical tensile behavior at temperatures higher than 100°C and after necking. Cavitation, crystalline phase transitions and orientation process are investigated by small and wide angle x-ray experiments. Two PVDF with different molecular weight distributions are considered. These microstructure differences mainly affect cavitation.  相似文献   
219.
Shape memory polyurethanes are usually fabricated with low-molecular weight polyols through a two-step copolymerization, which often results in difficulty attaining both desired shape memory switch temperature and optimal thermomechanical properties. Here we present a series of shape memory polyurethane copolymers having urethane chains as soft segments. The structure and shape memory properties of copolymers were investigated with differential scanning calorimetry, dynamic mechanical analysis, small angle x-ray scattering, and thermomechanical tests. Increasing the length of the urethane soft segments enhanced phase separation, while it brought little change to the glass transition temperature (T g). Based on the urethane soft segments, some rigid chain extenders could be readily introduced into the backbone of copolymers, resulting in better phase separation. All polyurethane copolymers exhibited more than 90% of shape recovery. The shape recovery of the materials was proved to be inversely proportional to the fraction of hard phase and directly proportional to the stability of hard domains. The copolymers containing longer soft and hard segments and rigid chain extenders exhibited higher deformation stress and thus larger recovery stress. The copolymerization employing urethane chains as soft segments can greatly expand flexibility for molecular design and favor the optimization of shape memory properties.  相似文献   
220.
Nanostructured cobalt is one of the key elements in catalysis and therapeutic drug delivery. To design and prepare nanosize-controllable cobalt, a better understanding of its growth mechanism is essential. Growth of Co nanoparticles encapsulated in carbon-shell (Co@C) during temperature-programmed carbonization of the Co2+-β-cyclodextrin (CD) complex at 363–573 K was, therefore, studied by in situ synchrotron small-angel X-ray scattering and X-ray absorption near edge structure spectroscopy. The carbon-shell having a thickness of about 2 nm can prevent the core Co from being aggregated and oxidized. A relatively slow reduction of Co(II) to Co is observed at 393–423 K (stage I) prior to a particle growth transition-state possessing Co of 2.2 nm in diameter at 423–483 K. At 483–513 K (stage II), an increasing Co(II) reduction rate coupled with a rapid fusion and coalescence of Co nanoparticles is found. The average growth rates of Co at stages I and II are about 27 and 98 atoms/min, respectively. The most-probable particle diameter of the ripened Co is 5.9 nm. The carbon-shell can be removed by steam reforming to yield the Co nanoparticles. This work also exemplifies the possible temperature-controllable growth of Co@C, especially in the Co size range of 2–6 nm in diameter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号