全文获取类型
收费全文 | 63篇 |
免费 | 3篇 |
国内免费 | 16篇 |
专业分类
化学 | 71篇 |
晶体学 | 3篇 |
物理学 | 8篇 |
出版年
2023年 | 1篇 |
2022年 | 2篇 |
2021年 | 1篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 2篇 |
2014年 | 3篇 |
2013年 | 6篇 |
2012年 | 4篇 |
2011年 | 4篇 |
2010年 | 1篇 |
2009年 | 4篇 |
2008年 | 4篇 |
2007年 | 2篇 |
2006年 | 3篇 |
2004年 | 2篇 |
2003年 | 2篇 |
2002年 | 1篇 |
2001年 | 2篇 |
2000年 | 5篇 |
1999年 | 5篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 7篇 |
1994年 | 1篇 |
1993年 | 3篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有82条查询结果,搜索用时 31 毫秒
71.
Thermal behavior and phase behavior in blends of liquid crystalline poly(aryl ether ketone) with lateral methoxy groups (M-PAEK) and poly(aryl ether ether ketone) containing thioether units (S-PEEK) have been investigated by differential scanning calorimetry (DSC) and polarized light microscopy (PLM) techniques. The results indicate that the composition of the blends has great effect on the phase behavior and morphology. Thin films of pure M-PAEK and S-PEEK crystallized from the melts exhibit typical mosaic and spherulitic structures, respectively. For the blends with higher M-PAEK contents (> 50%), an unusual ring-banded spherulite with structural discontinuity is formed. The bright core and rings of the ring-banded spherulites under PLM are composed of M-PAEK phase, while the dark rings consist mainly of S-PEEK phase. For the 50:50 M-PAEK/S-PEEK blend, the ring-banded spherulites and S-PEEK spherulites coexist, which implies that a partial phase separation between the two components takes place in the melting state. In S-PEEK-rich blends, a volume-filled spherulite is produced. In addition, the effect of isothermal crystallization temperature on the phase behavior, especially the ring-banded spherulite formation in the blends, is discussed. 相似文献
72.
The relationship between ringed spherulite morphology, crystallization regimes/kinetics, and molecular interactions in miscible ternary blends of poly(-caprolactone) (PCL), poly(benzyl methacrylate) (PBzMA), and poly(styrene-co-acrylonitrile) (SAN) was investigated by using differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide-angle X-ray diffraction (WAXD). The interactions resulted in the deviation of both experimental and calculated Tgs and formation of the specific morphology of the spherulitic structure. Ring-banded spherulites were observed in the PCL/PBzMA/SAN ternary blends. The width of ring bands changed with the blend ratio and the crystallization temperature. Additionally, both composition and wt% of AN in the SAN copolymer had an apparent effect on the morphology of PCL spherulites. Both the crystallization structure of lamellae and molecular interactions greatly influenced the ring bands of PCL spherulites. Furthermore, by using the Flory–Huggins approximation, the depression of the melting point showed that interactions in the PCL/PBzMA/SAN-17 blend were greater than in the PCL/PBzMA/SAN-25 blend. In the ternary blends, the great molecular interactions between amorphous and crystalline polymer resulted in better homogeneity and a larger band period of the extinction rings in the PCL spherulites. 相似文献
73.
Composition profiles develop around growing PVDF spherulites in a blend with PMMA. These profiles assume stationary courses after a certain crystallization time provided that the overall degree of crystallinity is not too high. The composition-dependent growth rate and the diffusion-controlled remove of the surplus PMMA from the spherulite surface are then in a stationary equilibrium. The internal structure of the spherulites will then be homogeneous, too. Upon isothermal crystallization of a PVDF/PMMA = 60/40 (wt %) blend at 160°C for at least 4 h, the spherulites internal degree of crystallinity xc as related to the PVDF fraction obeys the inequality 55 wt % ≤ xc ≤ 84 wt %. The overall PMMA content within the spherulites as averaged over its whole inside has been determined by IR microscopy. It amounts to about 15 wt %. In contrast, the PMMA content of the amorphous phase within the spherulites (averaged again over its whole inside) ranges between 28 and 52 wt %. This composition jumps at the spherulite surface to 52 wt %. From the slope of the composition profiles outside the spherulites that have a width of more than 50 μm, the effective chain diffusion coefficient in blends as averaged over both components can be calculated to amount to (250 ± 100) μm2h−1. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2923–2930, 1998 相似文献
74.
Wu Wang Jerold M. Schultz Benjamin S. Hsiao 《Journal of Polymer Science.Polymer Physics》1996,34(17):3095-3105
Anomalous two-stage spherulite growth has been observed in poly(aryl ether ketones) during isothermal crystallization. The first stage consists of a conventional growth with Maltesecross pattern at a lower growth rate. The morphology shows a smooth interface, dense structure and negative birefringence. The second stage grows in the form of “aggregate” at a higher rate. The morphology shows an open dendrite structure without preferred optical orientation. The second morphology is also termed the “overgrowth.” The occurrence of overgrowth is favored only near the maximum growth rate region and diminishes in the slow growth region. The transition of the two-stage growth is attributed to the change of growth direction of the constituent lamellae. We have confirmed this by microbeam small-angle light-scattering measurements. The lamellar structures in both growth stages were followed by time-resolved small-angle synchrotron x-ray scattering. It was found that the lamellar structures of the crystals formed at both stages are the same. A possible explanation for the two-stage growth is the interface breakdown caused by large perturbations of local composition and/or stress fields. © 1996 John Wiley & Sons, Inc. 相似文献
75.
Detailed analysis of temperature dependences of spherulite morphology and crystallite orientation of poly(vinylidene fluoride) via a combinatorial method 下载免费PDF全文
Temperature dependences of spherulite morphology and crystal orientation of poly(vinylidene fluoride) (PVDF) were systematically investigated via a combinatorial method. The method created a temperature gradient ranging from 130 to 200 °C. Results show that the preferential orientation of the crystallites changes with the crystallization temperature. The crystallization at 169 °C gives the most highly developed crystalline state of PVDF crystalline form II (α form), in which the spherulite size is maximal, and the crystallite sizes are also the longest, about 200 nm along the b axes. Besides, the a‐axis is almost parallel to the film normal. It indicates that the crystallization rate is the highest in the b‐axis direction. The perferential orientation at higher temperatures may be attributed to the confined 2D growth of the PVDF spherulites in the thin film, whereas the spherulites grow in the 3D mode at lower temperatures. The crystallization behavior revealed in the method is consistent with the results of melt isothermal crystallization experiments. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 253–261 相似文献
76.
Leila Maringer Michael Grabmann Martin Muik David Nitsche Christoph Romanin Gernot Wallner 《International Journal of Polymer Analysis and Characterization》2017,22(8):692-698
Within this work, a fluorescence microscopy approach for the investigation of the distribution of polymer additives in polypropylene is presented. The fluorescent whitening agent 2,5-bis-(5-tert-butyl-benzoxazol-2-yl)-thiophene was used as a model compound representing other groups of polymer additives. So far, methods reported in the literature such as UV and IR microscopy offer a high spatial resolution, however, suffer from poor sensitivities, thus not allowing them to analyze samples with low additive concentrations typically used in engineering materials. Using the fluorescence microscopy technique, it was shown that independent from the applied concentrations (0.1–1.7?wt%), additives are distributed on a spherulitic scale with the majority being found at the spherulite boundary and only traces in the center. Furthermore, it could be demonstrated that the additive distribution is affected not only by the spherulite sizes but also by the cooling rate of the polymer melt leading to more or less pronounced additive distribution patterns. 相似文献
77.
Phase field modeling of the ring-banded spherulites of crystalline polymers: The role of thermal diffusion 下载免费PDF全文
The ring-banded spherulite is a special morphology of polymer crystals and has attracted considerable attention over recent decades. In this study, a new phase field model with polymer characteristics is established to investigate the emergence and formation mechanism of the ring-banded spherulites of crystalline polymers. The model consists of a nonconserved phase field representing the phase transition and a temperature field describing the diffusion of the released latent heat. The corresponding model parameters can be obtained from experimentally accessible material parameters.Two-dimensional calculations are carried out for the ring-banded spherulitic growth of polyethylene film under a series of crystallization temperatures. The results of these calculations demonstrate that the formation of ring-banded spherulites can be triggered by the self-generated thermal field. Moreover, some temperature-dependent characteristics of the ring-banded spherulites observed in experiments are reproduced by simulations, which may help to study the effects of crystallization temperature on the ring-banded structures. 相似文献
78.
Yingjie Li Jian Liu Huichang Yang Dezhu Ma Benjamin Chu 《Journal of Polymer Science.Polymer Physics》1993,31(7):853-867
Small-angle light-scattering (SALS), Polarized light microscopy (PLM), differntial scanning calorimetry (DSC), and small-angle x-ray scattering (SAXS) were used to study morphological changes in segmented polyurethanes with 4,4′-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BD) as the hard segment. It was found. for the first time, that spherulites could form from the melt by quenching the polyurethanes in the melt state to annealing temperatures between 120°C and Th, the highest annealing temperature for spherulite formation. Th ranged from 140°C to ca. 170°C and depended upon the hard-and soft-segment compatibility. Within the range 120°C to Th, the radius of the spherulite increased with increasing hard-segment content at each fixed annealing temperature. Annealing at 135–140°C gave rise to the largest spherulites. SAXS was used to investigate the phase-separated structures corresponding to the spherulite formation. The interdomain spacing increased with increasing hard-segment content and with increasing annealing temperature.The degree of phase separation first increased with increasing annealing temperature from room temperatures (ca. 25°C), reached a maximum at ca. 107°C, and then decreased with further increase in the annealing temperature. On the basis of these observations, the mechanisms of phase separation, crystallization, and spherulite formation are discussed. © 1993 John Wiley & Sons, Inc. 相似文献
79.
聚对苯二甲酸1,3-丙二醇酯(PTT)是典型的半结晶聚合物,从熔体结晶形成球品,在某一结晶温度范围内,在球晶中可观察到环带结构,一般认为,环带球品的形成归因于片晶沿球晶径向的周期性扭曲,本文研究了PTT溶液浇铸薄膜在溶剂挥发过程中等温结晶的形态结构。 相似文献
80.
聚氨酯硬链段球晶生长与软硬链锻混容性的关系 总被引:3,自引:1,他引:3
线型可溶性聚氨酯的硬链段结晶难以长成球晶 ,然而本实验室已经证明即使从熔体结晶硬链段也是能够长成球晶的 .研究了聚酯与聚醚型聚氨酯硬链段长球晶的规律 ,并发现聚氨酯硬链段长球晶的难易与聚氨酯软硬链段混容性密切相关 .动态力学分析 (DMA)与示差扫描量热 (DSC)实验表明聚ε 已内酯 (PCL)、聚已二酸丁二醇酯 (PTMA)、聚四氢呋喃 (PTMO)及聚环氧丙烷 (PPO)型聚氨酯的软硬链段混容性从前至后递减 .从熔体退火结晶时 ,聚氨酯硬链段长成球晶的退火温度范围是有限的 ,软硬链段混容性越好 ,聚氨酯硬链段能长成球晶的温度范围越窄 ,所需长的时间越长 .聚氨酯硬链段长球晶的下限温度取决于软硬链段间所存在的氢键作用 ,聚氨酯硬链段长球晶的上限温度与软硬链段混容性直接相关 . 相似文献