首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1048篇
  免费   59篇
  国内免费   165篇
化学   1160篇
晶体学   3篇
力学   4篇
综合类   16篇
数学   36篇
物理学   53篇
  2023年   11篇
  2022年   26篇
  2021年   33篇
  2020年   38篇
  2019年   32篇
  2018年   26篇
  2017年   28篇
  2016年   37篇
  2015年   28篇
  2014年   37篇
  2013年   83篇
  2012年   64篇
  2011年   44篇
  2010年   65篇
  2009年   82篇
  2008年   79篇
  2007年   69篇
  2006年   60篇
  2005年   69篇
  2004年   46篇
  2003年   39篇
  2002年   28篇
  2001年   29篇
  2000年   25篇
  1999年   17篇
  1998年   19篇
  1997年   18篇
  1996年   27篇
  1995年   24篇
  1994年   10篇
  1993年   12篇
  1992年   4篇
  1991年   11篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   11篇
  1986年   6篇
  1985年   5篇
  1984年   7篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1978年   1篇
排序方式: 共有1272条查询结果,搜索用时 515 毫秒
41.
Scientific evidence in the prevention and treatment of various disorders is accumulating regarding probiotics. The health benefits supported by adequate clinical data include increased resistance to infectious disease, decreased duration of diarrhea, management of inflammatory bowel disease, reduction of serum cholesterol, prevention of allergy, modulation of cytokine gene expression, and suppression of carcinogen production. Recent ventures in metabolic engineering and heterologous protein expression have enhanced the enzymatic and immunomodulatory effects of probiotics and, with time, may allow more active intervention among critical care patients. In addition, a number of approaches are currently being explored, including the physical and chemical protection of cells, to increase probiotic viability and its health benefits. Traditional immobilization of probiotics in gel matrices, most notably calcium alginate and κ-carrageenan, has frequently been employed, with noted improvements in viability during freezing and storage. Conflicting reports exist, however, on the protection offered by immobilization from harsh physiologic environments. An alternative approach, microencapsulation in “artificial cells,” builds on immobilization technologies by combining enhanced mechanical stability of the capsule membrane with improved mass transport, increased cell loading, and greater control of parameters. This review summarizes the current clinical status of probiotics, examines the promises and challenges of current immobilization technologies, and presents the concept of artificial cells for effective delivery of therapeutic bacterial cells.  相似文献   
42.
The effect of PbO on cement hydration kinetics by calorimetric method was evaluated as a first step in this project. Substantial retardation of reaction with water at early stages with subsequent intensification of the process was found. As the next step, the model systems covering pure cement minerals and their mixtures of various composition as well as soluble Pb salts were taken into account to elucidate the mechanism of delayed, by quite good formation of products in the so-called post-induction period. The precipitation of sulphate, forming very thin impermeable layer seems to be responsible for this delaying effect in case of cement, however the other reactions of Pb compounds in alkaline environment of hydrating calcium silicate are not out of importance. In order to prove this, the studies of chemical composition in small areas were also carried out.  相似文献   
43.
Conidia of Aspergillus niger were immobilized in calcium alginate gel for the production of citric acid. First, the type of the preactivation medium, together with the preactivation period, was investigated. It was found that A. niger requires a 2-d preactivation period at a 0.05 g/L NH4NO3 concentration. Second, preactivated cells were used to determine the effects of nitrogen concentration and the flow rate of oxygen and air on the production of citric acid. Maximum citric acid production was attained with medium containing 0.01 g/L of NH4NO3. The rate of citric acid production in the nitrogenous medium was 33% higher when oxygen was used instead of air during the production phase. This corresponds to an increase of 85% when compared to production when neither oxygen nor air was fed into the system. In the nonnitrogenous medium citric acid concentration remained similar regardless of the use of air or oxygen. However, in the nonnitrogenous production medium, citric acid production was not influenced considerably when oxygen was used instead of air. The advantage of using immobilized cells is that production is achieved easily in the continuous system. Therefore, citric acid production was also tested using a packed-bed bioreactor, and an increase in productivity by a factor of 22 was achieved compared to the batch system.  相似文献   
44.
Purification and reversible immobilization of d-amino acid oxidase from Trigonopsis variabilis could be simultaneously accomplished by hydrophobic interaction on Phenyl Sepharose CL-4B in the presence of 50 mM pyrophosphate buffer (pH 8.5). The presence of a high salt concentration of 2M, which is generally required for the hydrophobic interactions, was not essential for the hydrophobic immobilization. The enzyme in free as well as immobilized form was optimally active between pH 7.0 and 9.0. The immobilized preparation could be reused in a batch process for the conversion of d-amino acids to α-keto acids. When the activity of the preparation dropped below practical limits, the gel could be regenerated by water wash and recharged with fresh crude extract from yeast.  相似文献   
45.
Biosurface fabrication using the Fab′ fragment of immunoglobulin (IgG) was carried out by self-assembly (SA) technique. The pepsin-digested monoclonal antibody (Mab) against bovine insulin containing the F(ab′)2 fragment and residual proteins was separated using affinity chromatography and dialysis. To prevent the nonspecific binding of F(ab′)2 onto gold (Au) substrate, the native disulfide bridge was reduced using dithiothreitol (DTT) to convert F(ab′)2 into Fab′, which made the immobilization to be carried out via the native thiol (–SH) group. The fabricated biosurface using SA technique showed the formation of stable thin film through AFM topography. Through the concentration change of DTT and Fab′, the absorption characteristics against the Au surface were investigated using surface plasmon resonance (SPR) with the flow cell. The amount of immobilized antibody fragment and the antigen binding capacity were regulated with respect to the reduction state and concentration of F(ab′)2. Based on the biosurface of the fabricated Fab′, the insulin-detection was carried out by the measurement of SPR. The proposed antibody surface could successfully detect the bovine insulin at the concentration from 100 ng/mL to 10 μg/mL.  相似文献   
46.
Enzymatic oligosaccharide synthesis using recombinant glycosyltransferases is able to overcome the difficulties associated with chemical methods. Nonetheless, sugar nucleotide regeneration cycles are necessary for the glycosylation. The multistep enzyme reaction can be efficiently carried out on superbeads that are prepared by immobilizing multienzyme mixtures on bead support through fused binding domains.  相似文献   
47.
A method is developed whereby spherical and other particles can be derivatised with electroactive species on their surface and then immobilised on the surface of an electrode. The chronoamperometric and voltammetric responses in the limit of reversible electrode kinetics are modelled using a theory of charge movement over the surface of the spheres where this movement is considered as a diffusional process. The model is extended to include different distributions of sphere radii and to model the scenario of truncated spheres resting on the electrode surface. It is found that a good estimation of the truncation angle can be found by fitting the experimental data with theoretical predictions.  相似文献   
48.
The immobilization of biological molecules onto polymeric membranes to produce biofunctional membranes is used for selective catalysis, separation, analysis, and artificial organs. Normally, random immobilization of enzymes onto polymeric membranes leads to dramatic reduction in activity due to chemical reactions involved in enzyme immobilization, multiple-point binding, etc., and the extent of activity reduction is a function of membrane hydrophilicity (e.g. activity in cellulosic membrane?polysulfone membrane). We have used molecular biology to effect site-specific immobilization of enzymes in a manner that orients the active site away from the polymeric membrane surface, thus resulting in higher enzyme activity that approaches that in solution and in increased stability of the enzyme relative to the enzyme in solution. A prediction of this site-specific method of enzyme immobilization, which in this study with subtilisin and organophosphorus hydrolase consists of a fusion tag genetically added to these enzymes and subsequent immobilization via the anti-tag antibody and membrane-bound protein A, is that the active site conformation will more closely resemble that of the enzyme in solution than is the case for random immobilization. This hypothesis was confirmed using a new electron paramagnetic resonance (EPR) spin label active site titration method that determines the amount of spin label bound to the active site of the immobilized enzyme. This value nearly perfectly matched the enzyme activity, and the results suggested: (a) a spectroscopic method for measuring activity and thus the extent of active enzyme immobilization in membrane, which may have advantages in cases where optical methods can not be used due to light scattering interference; (b) higher spin label incorporation (and hence activity) in enzymes that had been site-specifically immobilized versus random immobilization; (c) higher spin label incorporation in enzymes immobilized onto hydrophilic bacterial cellulose membranes versus hydrophobic modified poly(ether)sulfone membranes. These results are discussed with reference to analysis and utilization of biofunctional membranes.  相似文献   
49.
S1 nuclease fromAspergillus oryzae (EC 3.1.30.1) was coupled to gelatin-alginate composite matrix using the residual free aldehyde groups on the surface of glutaraldehyde crosslinked matrix. The immobilized enzyme retained approximately 10% activity of the soluble enzyme. When partially purified enzyme was bound to the matrix, the immobilized preparation did not show any detectable enzyme activity. However, the activity could be restored when the coupling was carried out in the presence of a coprotein or substrate. The optimum pH of the immobilized S1 nuclease shifted to 3.8 from 4.3 for the soluble enzyme. Also, optimum temperature increased to 65°C after immobilization. Bound S1 nuclease showed increased pH and temperature stabilities. Immobilization brought about a twofold decrease in the Michaelis-Menton constant (K m).  相似文献   
50.
A new method for the reversible immobilization of thiol bimolecules, e.g., thiolpeptides and thiolproteins, to beaded agarose and other solid phases is reported. The method consists of an activation and a coupling step. The activation is based on oxidation of disulfides (or thiol groups via disulfides) present in a solid phase by hydrogen peroxide at moderately acidic pH. This oxidation leads to disulfide oxides (thiolsulfinate groups of which the majority are further oxidized to thiolsulfonate). The thiolsulfonate groups react easily with thiol compounds, which become immobilized via disulfide bonds. The pH range for thiol coupling is wide (pH 5-8), but for most thiols the reaction seems to proceed faster at pH>7. The stability of the reactive group to hydrolysis, especially at neutral and weakly acidic pH, is very high. The activated gel, therefore, can be stored as a suspension at pH 5 for extended periods. The method has been used to reversibly immobilize glutathione, β-galactosidase, alcohol dehydrogenase, urease, and papain, all with exposed thiol groups as well as thiolated bovine serum albumin and sweet-potato β-amylase. Depending on the thiol content of starting thiol-agarose, thiol-sulfonate-agarose derivatives with different binding capacities can be obtained. Thus, up to 5.0 mg (16 μmol) glutathione and 15 mg thiol-protein/mL gel derivative have been immobilized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号