首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1533篇
  免费   72篇
  国内免费   72篇
化学   1167篇
晶体学   10篇
力学   124篇
综合类   2篇
数学   98篇
物理学   276篇
  2023年   25篇
  2022年   78篇
  2021年   65篇
  2020年   46篇
  2019年   51篇
  2018年   42篇
  2017年   53篇
  2016年   58篇
  2015年   48篇
  2014年   59篇
  2013年   80篇
  2012年   76篇
  2011年   81篇
  2010年   60篇
  2009年   77篇
  2008年   53篇
  2007年   87篇
  2006年   82篇
  2005年   51篇
  2004年   62篇
  2003年   38篇
  2002年   46篇
  2001年   24篇
  2000年   32篇
  1999年   24篇
  1998年   24篇
  1997年   24篇
  1996年   14篇
  1995年   15篇
  1994年   15篇
  1993年   18篇
  1992年   17篇
  1991年   17篇
  1990年   14篇
  1989年   18篇
  1988年   14篇
  1987年   7篇
  1986年   6篇
  1985年   7篇
  1984年   6篇
  1983年   7篇
  1982年   3篇
  1981年   6篇
  1980年   7篇
  1979年   11篇
  1978年   7篇
  1977年   6篇
  1976年   6篇
  1973年   2篇
  1972年   3篇
排序方式: 共有1677条查询结果,搜索用时 15 毫秒
91.
本文通过一步合成法合成了四种不同摩尔比的四乙基氯化胺-乙醇胺低共熔溶剂(TEAC-MEA DES)。红外光谱表征分析表明该DES是依靠氢键作用而形成的;DES的热稳定性高于MEA,且随着MEA的比例的增加而降低;对不同比例的DES进行了四次循环CO2吸收-解吸实验,发现其吸收容量几乎不变,重复使用性能较好。在不同温度下计算了化学平衡常数,lnK对1/T线性拟合结果表明DES吸收CO2的反应焓是负值,即吸收CO2的反应是放热过程。该DES在吸收CO2方面具有很大的潜力。  相似文献   
92.
Dispersive liquid-liquid microextraction is one of the most widely used microextraction techniques currently in the analytical chemistry field, mainly due to its simplicity and rapidity. The operational mode of this approach has been constantly changing since its introduction, adapting to new trends and applications. Most of these changes are related to the nature of the solvent employed for the microextraction. From the classical halogenated solvents (e.g., chloroform or dichloromethane), different alternatives have been proposed in order to obtain safer and non-pollutants microextraction applications. In this sense, low-density solvents, such as alkanols, switchable hydrophobicity solvents, and ionic liquids were the first and most popular replacements for halogenated solvents, which provided similar or better results than these classical dispersive liquid-liquid microextraction solvents. However, despite the good performances obtained with low-density solvents and ionic liquids, researchers have continued investigating in order to obtain even greener solvents for dispersive liquid-liquid microextraction. For that reason, in this review, the evolution over the last five years of the three types of solvents already mentioned and two of the most promising solvent alternatives (i.e., deep eutectic solvents and supramolecular solvents), have been studied in detail with the purpose of discussing which one provides the greenest alternative.  相似文献   
93.
A sensitive method based on liquid chromatography combined with a diode array detector was developed and validated to simultaneously determine tamoxifen, and its active metabolites N-desmethyltamoxifen, 4-hydroxytamoxifen, and endoxifen in human plasma samples. The green and sustainable vortex-assisted dispersive liquid-phase microextraction technique based on the natural hydrophobic deep eutectic solvent was used for the extraction and preconcentration of the analytes. Chemometrics and multivariate analysis were used to optimize the independent variables including the type and volume of deep eutectic solvent, extraction time, and ionic strength. Under optimal conditions, calibration curves were linear in a suitable range with the lower limits of quantification (0.8–10.0 μg/L), which covered the relevant concentrations of the analytes in plasma samples for a clinical study. Intra- and interday precision evaluated at three concentrations for the analytes were lower than 8.2 and 12.1%, respectively. Accuracy was in the range of 94.9–104.7%. The applicability of the developed method on human plasma samples illustrated the range 45.1–72.8, 98.4–128.3, 0.9–1.2, and 2.7–6.1 μg/L for tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen, and endoxifen, respectively. The validated method can be effective for the pharmacokinetics, pharmacodynamics, and therapeutic drug monitoring studies of tamoxifen and its main metabolites in biological fluids.  相似文献   
94.
Single-drop microextraction (SDME) has been recognized as one of the simple miniaturized sample preparation tools for the isolation and preconcentration of several analytes from a complex sample matrix. In this review, we explored the applications of SDME coupled with various analytical techniques (spectroscopy, chromatography, and mass spectrometry) for the analysis of organic molecules, inorganic ions, and biomolecules from various sample matrices including food, environmental, clinical, pharmaceutical, and industrial samples. Also, it summarizes the use of nanoparticles in SDME combined with various analytical tools for the rapid analysis of several trace-level target analytes. An overview of ionic liquids, deep eutectic solvents, and SUPRAS, which improved the selectivity and sensitivity of various analytical techniques toward several analytes, as promising extracting solvent systems in SDME is also included. Finally, discussed the impressive analytical features and future perspectives of SDME in this review article.  相似文献   
95.
Some medicines are poorly soluble in water. For tube feeding and parenteral administration, liquid formulations are required. The discovery of natural deep eutectic solvents (NADES) opened the way to potential applications for liquid drug formulations. NADES consists of a mixture of two or more simple natural products such as sugars, amino acids, organic acids, choline/betaine, and poly-alcohols in certain molar ratios. A series of NADES with a water content of 0–30% (w/w) was screened for the ability to solubilize (in a stable way) some poorly water-soluble pharmaceuticals at a concentration of 5 mg/mL. The results showed that NADES selectively dissolved the tested drugs. Some mixtures of choline-based NADES, acid-neutral or sugars-based NADES could dissolve chloral hydrate (dissociated in water), ranitidine·HCl (polymorphism), and methylphenidate (water insoluble), at a concentration of up to 250 mg/mL, the highest concentration tested. Whereas a mixture of lactic-acid–propyleneglycol could dissolve spironolacton and trimethoprim at a concentration up to 50 and 100 mg/mL, respectively. The results showed that NADES are promising solvents for formulation of poorly water-soluble medicines for the development of parenteral and tube feeding administration of non-water-soluble medicines. The chemical stability and bioavailability of these drug in NADES needs further studies.  相似文献   
96.
Glycolipids are non-ionic surfactants occurring in numerous products of daily life. Due to their surface-activity, emulsifying properties, and foaming abilities, they can be applied in food, cosmetics, and pharmaceuticals. Enzymatic synthesis of glycolipids based on carbohydrates and free fatty acids or esters is often catalyzed using certain acyltransferases in reaction media of low water activity, e.g., organic solvents or notably Deep Eutectic Systems (DESs). Existing reports describing integrated processes for glycolipid production from renewables use many reaction steps, therefore this study aims at simplifying the procedure. By using microwave dielectric heating, DESs preparation was first accelerated considerably. A comparative study revealed a preparation time on average 16-fold faster than the conventional heating method in an incubator. Furthermore, lipids from robust oleaginous yeast biomass were successfully extracted up to 70% without using the pre-treatment method for cell disruption, limiting logically the energy input necessary for such process. Acidified DESs consisting of either xylitol or sorbitol and choline chloride mediated the one-pot process, allowing subsequent conversion of the lipids into mono-acylated palmitate, oleate, linoleate, and stearate sugar alcohol esters. Thus, we show strong evidence that addition of immobilized Candida antarctica Lipase B (Novozym 435®), in acidified DES mixture, enables a simplified and fast glycolipid synthesis using directly oleaginous yeast biomass.  相似文献   
97.
Residual dipolar couplings (RDC) provide important global restraints for accurate structure determination by NMR. We show that nonuniform sampling in combination with maximum entropy reconstruction (MaxEnt) is a promising strategy for accelerating and potentially enhancing the acquisition of RDC spectra. Using MaxEnt-processed spectra of nonuniformly sampled data sets that are reduced up to one fifth relative to uniform sampling, accurate 13C'-13Calpha RDCs can be obtained that agree with an RMS of 0.67 Hz with those derived from uniformly sampled, Fourier transformed spectra. While confirming that frequency errors in MaxEnt spectra are very slight, an unexpected class of systematic errors was found to occur in the 6th significant figure of 13C' chemical shifts of doublets obtained by MaxEnt reconstruction. We show that this error stems from slight line shape perturbations and predict it should be encountered in other nonlinear spectral estimation algorithms. In the case of MaxEnt reconstruction, the error can easily be rendered systematic by straightforward optimization of MaxEnt reconstruction parameters and self-cancels in obtaining RDCs from nonuniformly sampled, MaxEnt reconstructed spectra.  相似文献   
98.
The CompassR (computer-assisted recombination) rule enables, among beneficial substitutions, the identification of those that can be recombined in directed evolution. Herein, a recombination strategy is systematically investigated to minimize experimental efforts and maximize possible improvements. In total, 15 beneficial substitutions from Bacillus subtilis lipase A (BSLA), which improves resistance to the organic cosolvent 1,4-dioxane (DOX), were studied to compare two recombination strategies, the two-gene recombination process (2GenReP) and the in silico guided recombination process (InSiReP), employing CompassR. Remarkably, both strategies yielded a highly DOX-resistant variant, M4 (I12R/Y49R/E65H/N98R/K122E/L124K), with up to 14.6-fold improvement after screening of about 270 clones. M4 has a remarkably enhanced resistance in 60 % (v/v) acetone (6.0-fold), 30 % (v/v) ethanol (2.1-fold), and 60 % (v/v) methanol (2.4-fold) compared with wild-type BSLA. Molecular dynamics simulations revealed that attracting water molecules by charged surface substitutions is the main driver for increasing the DOX resistance of BSLA M4. Both strategies and obtained molecular knowledge can likely be used to improve the properties of other enzymes with a similar α/β-hydrolase fold.  相似文献   
99.
Materials with ordered mesoporous structures have shown great potential in a wide range of applications. In particular, the combination of mesoporosity, low dimensionality, and well‐defined morphology in nanostructures may exhibit even more attractive features. However, the synthesis of such structures is still challenging in polar solvents. Herein, we report the preparation of ultrathin two‐dimensional (2D) nanoflakes of transition‐metal phosphates, including FePO4, Mn3(PO4)2, and Co3(PO4)2, with highly ordered mesoporous structures in a nonpolar solvent. The as‐obtained nanoflakes with thicknesses of about 3.7 nm are constructed from a single layer of parallel‐packed pore channels. These uniquely ordered mesoporous 2D nanostructures may originate from the 2D assembly of cylindrical micelles formed by the amphiphilic precursors in the nonpolar solvent. The 2D mesoporous FePO4 nanoflakes were used as the cathode for a lithium‐ion battery, which exhibits excellent stability and high rate capabilities.  相似文献   
100.
The deployment of high-energy-density lithium-metal batteries has been greatly impeded by Li dendrite growth and safety concerns originating from flammable liquid electrolytes. Herein, we report a stable quasi-solid-state Li metal battery with a deep eutectic solvent (DES)-based self-healing polymer (DSP) electrolyte. This electrolyte was fabricated in a facile manner by in situ copolymerization of 2-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)ethyl methacrylate (UPyMA) and pentaerythritol tetraacrylate (PETEA) monomers in a DES-based electrolyte containing fluoroethylene carbonate (FEC) as an additive. The well-designed DSP electrolyte simultaneously possesses non-flammability, high ionic conductivity and electrochemical stability, and dendrite-free Li plating. When applied in Li metal batteries with a LiMn2O4 cathode, the DSP electrolyte effectively suppressed manganese dissolution from the cathode and enabled high-capacity and a long lifespan at room and elevated temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号