首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2537篇
  免费   161篇
  国内免费   459篇
化学   1868篇
晶体学   27篇
力学   87篇
综合类   2篇
数学   125篇
物理学   1048篇
  2024年   16篇
  2023年   111篇
  2022年   115篇
  2021年   104篇
  2020年   182篇
  2019年   141篇
  2018年   152篇
  2017年   219篇
  2016年   203篇
  2015年   195篇
  2014年   229篇
  2013年   223篇
  2012年   220篇
  2011年   215篇
  2010年   107篇
  2009年   117篇
  2008年   74篇
  2007年   81篇
  2006年   75篇
  2005年   35篇
  2004年   36篇
  2003年   32篇
  2002年   33篇
  2001年   25篇
  2000年   28篇
  1999年   18篇
  1998年   29篇
  1997年   11篇
  1996年   16篇
  1995年   11篇
  1994年   9篇
  1993年   18篇
  1992年   20篇
  1991年   6篇
  1990年   10篇
  1989年   7篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   9篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1971年   1篇
排序方式: 共有3157条查询结果,搜索用时 15 毫秒
101.
《Physics letters. A》2014,378(1-2):68-72
We investigate the effect of hydrogen dimers on the electronic structure of graphene. Using Greenʼs function and the T-matrix approach, we calculate the local density of states of graphene with single hydrogen dimer, as well as the quasiparticle spectral function of graphene with a finite concentration of randomly distributed hydrogen dimers. Our results show that the effect of dimer adsorption is dramatically different from that of monomer adsorption previously studied, and strongly depends on the configuration of the dimer. The features of the plotted spectral function of graphene are relevant to the band gap opening and the metal–insulator transition.  相似文献   
102.
103.
《Physics letters. A》2020,384(31):126790
The molecular dynamics method is used to study the formation of the Al/graphene nanocomposite in the structural grains of different size under the action of internal stresses. The behavior of graphene sheets inside an individual structural grain as well as in the process of two Al grains containing graphene are joined is investigated. The motion of graphene films, starting from the middle of the aluminum matrix, ends with their location at the crystallite boundaries. Graphene moves in the Al matrix along closely packed planes. In this case, graphene sheets acquire curvature. An intergrowth of graphene sheets is also observed. A contact between two Al-C nanocrystallites through a graphene interlayer is created. The self-diffusion coefficients of atoms and the partial potential energies increased with decreasing nanocrystallite size. The angular distribution of the nearest geometric neighbors and the distribution of distances to the nearest neighbors are determined using the construction of Voronoi polyhedra.  相似文献   
104.
ABSTRACT

The stable configurations, electronic structures and catalytic activities of single-atom metal catalyst anchored silicon-doped graphene sheets (3Si-graphene-M, M?=?Ni and Pd) are investigated by using density functional theory calculations. Firstly, the adsorption stability and electronic property of different gas reactants (O2, CO, 2CO, CO/O2) on 3Si-graphene-M substrates are comparably analysed. It is found that the coadsorption of O2/CO or 2CO molecules is more stable than that of the isolated O2 or CO molecule. Meanwhile, the adsorbed species on 3Si-graphene-Ni sheet are more stable than those on the 3Si-graphene-Pd sheet. Secondly, the possible CO oxidation reactions on the 3Si-graphene-M are investigated through Eley–Rideal (ER), Langmuir–Hinshelwood (LH) and new termolecular Eley–Rideal (TER) mechanisms. Compared with the LH and TER mechanisms, the interaction between 2CO and O2 molecules (O2?+?CO → CO3, CO3?+?CO → 2CO2) through ER reactions (< 0.2?eV) are an energetically more favourable. These results provide important reference for understanding the catalytic mechanism for CO oxidation on graphene-based catalyst.  相似文献   
105.
This study is the first to explore the possibility of utilizing CuCr LDH decorated on reduced graphene oxide (rGO) and graphene oxide (GO) as sonophotocatalysts for the degradation of dimethyl phthalate (DMP). CuCr LDH and its nanocomposites were successfully fabricated and characterized. Scanning electron microscopy (SEM) along with high-resolution transmission electron microscope (HRTEM) both evidenced the formation of randomly oriented nanosheet structures of CuCr LDH coupled with thin and folded sheets of GO and rGO. The impact of diverse processes on the degradation efficiency of DMP in the presence of the so-prepared catalysts was compared. Benefiting from the low bandgap and high specific surface area, the as-obtained CuCr LDH/rGO represented outstanding catalytic activity (100 %) toward 15 mg L−1 of DMP within 30 min when subjected to light and ultrasonic irradiations simultaneously. Radical quenching experiments and visual spectrophotometry using an O-phenylenediamine revealed the crucial role of hydroxyl radicals compared to holes and superoxide radicals. Overall, outcomes disclosed that CuCr LDH/rGO is a stable and proper sonophotocatalyst for environmental remediation.  相似文献   
106.
In graphene in the presence of strain the elasticity theory metric naturally appears. However, this is not the one experienced by fermionic quasiparticles. Fermions propagate in curved space, whose metric is defined by expansion of the effective Hamiltonian near the topologically protected Fermi point. We discuss relation between both types of metric for different parametrizations of graphene surface. Next, we extend our consideration to the case, when the dislocations are present. We consider the situation, when the deformation is described by elasticity theory and calculate both torsion and emergent magnetic field carried by the dislocation. The dislocation carries singular torsion in addition to the quantized flux of emergent magnetic field. Both may be observed in the scattering of quasiparticles on the dislocation. Emergent magnetic field flux manifests itself in the Aharonov–Bohm effect while the torsion singularity results in Stodolsky effect.  相似文献   
107.
Determination of intracellular bioactive species will afford beneficial information related to cell metabolism, signal transduction, cell function, and disease treatment. In this study, the electrochemically reduced graphene oxide modified carbon fiber microdisk electrode (ER‐GOME) was used as a detector of CZE‐electrochemical detection and developed to detect glutathione (GSH). The electrocatalytic activity of the modified microelectrode was characterized by cyclic voltammetry. Under optimized experimental conditions, the concentration linear range of GSH was from 1 to 60 μM. When the S/N ratio was 3, the concentration detection limit was 1 μM. Compared with the unmodified carbon fiber microdisk electrode, the sensitivity was enhanced more than five times. With the use of this method, the average contents of GSH in single HepG2 cells were found to be 7.13 ± 1.11 fmol (n = 10). Compared with gold/mercury amalgam microelectrode, which was usually used in determining GSH, the electrochemically reduced graphene oxide modified carbon fiber microdisk electrode was friendly to environment for free mercury. Furthermore, there were several merits of the novel electrochemical detector coupled with CE, such as comparative repeatability, easy fabrication, and high sensitivity, hold great potential for the single‐cell assay.  相似文献   
108.
We have investigated the effective utilization potential of carbon nanomaterials in the field of pour point depressants, and reported three kind of carbon-based hybrid nano-pour-point depressants with different dimensions. In this paper, poly-α-olefins-acrylate high-carbon ester pour point depressant (PAA-18) was prepared by esterification and polymerization as the basic pour point depressant. Then, the basic pour point depressant PAA18 was modified by solvothermal method with graphene oxide (GO), carbon nanospheres (Cna) and carbon nanotubes (OCNTs). The morphology and structure of the composites were analyzed by SEM, FTIR and XRD. The results showed that PAA18 was successfully in situ polymerized on GO, Cna and OCNTs. We took the simulated oil as the experimental object, and evaluated its pour point, rheological properties and wax crystal morphology, and achieved excellent results. In the three carbon-based hybrid nano-pour-point depressants with different carbon contents, the oxidation carbon nanotubes composite pour point depressant (PAA18-1 % OCNTs) with carbon content of 1 % had the best pour point and viscosity reduction effect when the dosage was 1250 ppm, which could make the pour point of the simulated oil containing wax decrease by 16 °C. PAA18-1 % OCNTs reduced the pour point by 5 °C more than PAA18. This paper provides reference for the application of carbon nanomaterials in the field of pour point depressant.  相似文献   
109.
Nanocomposites containing CdSe quantum dots, tetra(4‐(4,6‐diaminopyrimidin‐2‐ylthio) phthalocyaninatocobalt(II)) (CoPyPc) and reduced graphene nanosheets (rGNS) were devoloped and used for the modification of a glassy carbon electrode. Characterization of the nanocomposites was done by transmission electron microscopy (TEM) and X‐ray diffraction (XRD) analyses. Cyclic voltammetry (CV) was used for electrochemical characterization of the prepared nanocomposite for oxygen reduction reaction. The oxygen reduction activity for rGNS/CdSe‐CoPyPc nanocomposite was found to be superior over the individual nanomaterials in this study. The activity of the nanocomposite towards oxygen reduction was also tested for tolerance to methanol crossover effect using chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) studies.  相似文献   
110.
LiFePO4/graphene (LiFePO4/G) cathode with exciting electrochemical performance was successfully synthesized by liquid phase method. LiFePO4 nanoparticles wrapped with multi-layered grapheme can be fabricated in a short time. This method did not need external heating source. Heat generated by chemical reaction conduct the process and removed the solvent simultaneously. The LiFePO4/G were analyzed by X-ray diffraction (XRD) analysis, scanning electron microscope (SEM), transmission electron microscopy (TEM), magnetic properties analysis and electrochemical performance tests. The LiFePO4/G delivered a capacity of 160 mAh g−1 at 0.1C and could tolerate various dis-charge currents with a capacity retention rate of 99.8%, 99.2%, 99.0%, 98.6%, 97.3% and 95.0% after stepwise under 5C, 10C, 15C, 20C, 25C and 30C, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号