首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   976篇
  免费   161篇
  国内免费   85篇
化学   277篇
晶体学   16篇
力学   234篇
综合类   15篇
数学   75篇
物理学   605篇
  2023年   2篇
  2022年   21篇
  2021年   22篇
  2020年   21篇
  2019年   20篇
  2018年   25篇
  2017年   35篇
  2016年   50篇
  2015年   38篇
  2014年   62篇
  2013年   100篇
  2012年   67篇
  2011年   74篇
  2010年   46篇
  2009年   55篇
  2008年   60篇
  2007年   58篇
  2006年   44篇
  2005年   60篇
  2004年   49篇
  2003年   43篇
  2002年   42篇
  2001年   31篇
  2000年   20篇
  1999年   27篇
  1998年   19篇
  1997年   20篇
  1996年   8篇
  1995年   16篇
  1994年   13篇
  1993年   16篇
  1992年   6篇
  1991年   7篇
  1990年   10篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1979年   3篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1222条查询结果,搜索用时 46 毫秒
31.
We studied the electrocatalytic activity of cobalt tetra-aminophthalocyanine (CoTAPc) for the reduction of molecular oxygen (O2) on adsorbed monomeric and on electropolymerized films of different thicknesses on glassy carbon (GC) electrode. The polymeric films, denoted poly-CoTAPc, were first characterized by electrochemical impedance spectroscopy and it appears that the types of phenomena revealed to be occurring depend less on the film thickness in basic than in acid media. For O2 reduction, the results showed that poly-CoTAPc is more active than the monomeric CoTAPc adsorbed on GC. Indeed, rotating ring-disk electrode data showed that polymeric CoTAPc promotes the four-electron reduction of O2 to water in parallel to a two-electron reduction to give peroxide. On monomeric and thin films of poly-CoTAPc, a two-electron reduction mechanism predominates. In basic media the activity increases very slightly with thickness, whereas in acid media this increase is more pronounced. This parallels the observed behavior revealed by electrochemical impedance spectroscopy.  相似文献   
32.
The response of a single TE102 and double TE104 rectangular cavity to the insertion of samples contained in tubes with variable wall thickness and a quartz Dewar into the cavity has been analyzed. A direct, indirect, and concurrent (positive or negative) “lens effect” inside the double TE104 rectangular cavity is discussed. The experimental dependence of the EPR signal intensity on the wall thickness of the sample tube, δ, for the line-like samples with identical length of the sample material column, L=30 mm, recorded in the microwave cavity showed a directly proportional increase of the relative “lens effect” with the increase of the wall thickness of the tube in the interval, δ∈<0.1 mm, >0.5 mm. The insertion of the variable-temperature double-wall quartz Dewar (home-built, resonant frequency shift, ca. −300 MHz) into the single TE102 rectangular cavity showed the same relative “lens effect”, with ca. 1.5-time increase of the EPR signal intensity, for a point-like sample and the line-like samples with material columns of diameter of 1 and 1.3 mm, and wall thickness of the sample tubes, δ∈<0.1 mm, >0.5 mm. The increased effect of the Dewar arises because the active volume of the quartz Dewar tube walls is always much more larger than the active volume of the sample tube wall. In the case of the double TE104 rectangular cavity, the insertion of the quartz Dewar: (i) into the same cavity, in which the sample is present, caused a direct “lens effect”, with ca. 1.8-fold increase of the EPR signal intensity; however, (ii) into the complementary cavity, in which the sample is absent, caused an indirect “lens effect”, with ca. 0.6-fold decrease of the EPR signal intensity. With the Dewar and sample in one cavity and a large empty sample tube in the complementary cavity, a concurrent (positive or negative) “lens effect” can be observed. Thus, the possible increase/decrease of the EPR signal intensity depends on the volume ratio of the quartz Dewar tube walls and large sample tube wall inserted into the double TE104 rectangular cavity. Each of the above phenomena may be a significant source error in quantitative EPR spectrometry unless the samples to be compared in the quantitative EPR analysis are contained in sample tubes having the same wall thickness and each EPR spectra should be recorded inside an identical quartz Dewar.  相似文献   
33.
With the widespread use of engineered nanoparticles for biomedical applications, detailed surface characterization is essential for ensuring reproducibility and the quality/suitability of the surface chemistry to the task at hand. One important surface property to be quantified is the overlayer thickness of self‐assembled monolayer (SAM) functionalized nanoparticles, as this information provides insight into SAM ordering and assembly. We demonstrate the application of high sensitivity low‐energy ion scattering (HS‐LEIS) as a new analytical method for the fast thickness characterization of SAM functionalized gold nanoparticles (AuNPs). HS‐LEIS demonstrates that a complete SAM is formed on 16‐mercaptohexadecanoic acid (C16COOH) functionalized 14 nm AuNPs. HS‐LEIS also experimentally provides SAM thickness values that are in good agreement with previously reported results from simulated electron spectra for surface analysis of X‐ray photoelectron spectroscopy data. These results indicate HS‐LEIS is a valuable surface analytical method for the characterization of SAM functionalized nanomaterials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
34.
A theoretical approach is developed that describes the formation of a thin-film of AB-compound layer under the influence of radiation-induced vacancy. The AB-compound layer is formed as a result of a chemical reaction between the atomic species of A and B immiscible layers. The two layers are irradiated with a beam of energetic particles and this process leads to several vacant lattice sites creation in both layers due to the displacement of lattice atoms by irradiating particles. A- and B-atoms diffuse via these lattice sites by means of a vacancy mechanism in considerable amount to reaction interfaces A/AB and AB/B. The reaction interfaces increase in thickness as a result of chemical transformation between the diffusing species and surface atoms (near both layers). The compound layer formation occurs in two stages. The first stage begins as an interfacial reaction controlled process, and the second as a diffusion controlled process. The critical thickness and time are determined at a transition point between the two stages. The influence of radiation-induced vacancy on layer thickness, speed of growth, and reaction rate is investigated under irradiation within the framework of the model presented here. The result obtained shows that the layer thickness, speed of growth, and reaction rate increase strongly as the defect generation rate rises in the irradiated layers. It also shows the feasibility of producing a compound layer (especially in near-noble metal silicide considered in this study) at a temperature below their normal formation temperature under the influence of radiation.  相似文献   
35.
"智能窗"大规模推广顺应可持续发展潮流,三氧化钨(WO_3)是生产"智能窗"的一种重要电致变色材料,但调控WO_3薄膜电致变色性能机制仍待进一步研究。采用旋涂法制备WO_3薄膜,重点研究了溶液浓度和旋涂次数对调控WO_3薄膜电致变色性能的影响。通过表面轮廓仪测量薄膜厚度,X射线衍射(XRD)测量薄膜结晶情况,原子力显微镜(AFM)和扫描电子显微镜(SEM)分析薄膜表面形貌,光谱仪测量薄膜初始态、着色态和褪色态的透射率。实验结果表明,随着溶液浓度增加(0. 2~1. 0 mol/L),薄膜厚度从9. 7 nm增加到33. 3 nm,透射率调制能力从0%提升到37. 0%;多次旋涂薄膜厚度线性增长,线性拟合优度(R~2)达0. 98,5次旋涂后透射率调制能力达51. 3%。改变溶液浓度和旋涂次数都是调控薄膜透射率调制能力的有效手段,精准调控薄膜透射率调制能力对设计不同应用场景的电致变色器件具有重大意义。  相似文献   
36.
At low Mach numbers, Godunov‐type approaches, based on the method of lines, suffer from an accuracy problem. This paper shows the importance of using the low Mach number correction in Godunov‐type methods for simulations involving low Mach numbers by utilising a new, well‐posed, two‐dimensional, two‐mode Kelvin–Helmholtz test case. Four independent codes have been used, enabling the examination of several numerical schemes. The second‐order and fifth‐order accurate Godunov‐type methods show that the vortex‐pairing process can be captured on a low resolution with the low Mach number correction applied down to 0.002. The results are compared without the low Mach number correction and also three other methods, a Lagrange‐remap method, a fifth‐order accurate in space and time finite difference type method based on the wave propagation algorithm, and fifth‐order spatial and third‐order temporal accurate finite volume Monotone Upwind Scheme for Conservation Laws (MUSCL) approach based on the Godunov method and Simple Low Dissipation Advection Upstream Splitting Method (SLAU) numerical flux with low Mach capture property. The ability of the compressible flow solver of the commercial software, ANSYS FLUENT , in solving low Mach flows is also demonstrated for the two time‐stepping methods provided in the compressible flow solver, implicit and explicit. Results demonstrate clearly that a low Mach correction is required for all algorithms except the Lagrange‐remap approach, where dissipation is independent of Mach number. © 2013 Crown copyright. International Journal for Numerical Methods in Fluids. © 2013 John Wiley & Sons, Ltd.  相似文献   
37.
Bending of the A = A (A of the group IVA) double bond neighboring is rationalized by the hyperconjugation phenomenon analysis. The bending is also observed for the high sized linear, cyclic or graphene-like compounds that imply the conjugated double bonds. The electronic delocalization takes place between occupied σ(π) and unoccupied π*(σ*) orbitals especially for compound implying Si and Ge atoms. Leading to rippled structure, this phenomenon affects the silicene and germane thickness sheets and probably would have some consequences on the properties of such compounds when they will be involved in the industries in the future. However we introduce a new parameter to assess the thickness of graphenic structures when the hyperconjugation takes place in the bonding framework. The study has been undertaken at high levels of theory like B3LYP/6-311 + G(3df,2p).  相似文献   
38.
The influence of the thickness of CdTe/n-Ge heterojunction photodetectors on IV curves was studied experimentally and theoretically. The thicknesses of the CdTe thin films were 110, 130, 150, and 200 nm. The power intensity of illumination was 150 mW/cm2. Increasing the thickness led to an increase in photocurrent.  相似文献   
39.
The sensitivity of far‐field Raman micro‐spectroscopy was investigated to determine quantitatively the actual thickness of organic thin films. It is shown that the thickness of organic films can be quantitatively determined down to 3 nm with an error margin of 20% and down to 1.5 nm with an error margin of 100%. Raman imaging of thin‐film surfaces with a far‐field optical microscope establishes the distribution of a polymer with a lateral resolution of ~400 nm and the homogeneity of the film. Raman images are presented for spin‐coated thin films of polysulfone (PSU) with average thicknesses between 3 and 50 nm. In films with an average thickness of 43 nm, the variation in thickness was around 5% for PSU. In films with an average thickness of 3 nm for PSU, the detected thickness variation was 100%. Raman imaging was performed in minutes for a surface area of 900 µm2. The results illustrate the ability of far‐field Raman microscopy as a sensitive method to quantitatively determine the thickness of thin films down to the nanometer range. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
40.
Mutual calibration was suggested as a method to determine the absolute thickness of ultrathin oxide films. It was motivated from the large offset values in the reported thicknesses in the Consultative Committee for Amount of Substance (CCQM) pilot study P-38 for the thickness measurement of SiO2 films on Si(100) and Si(111) substrates in 2004. Large offset values from 0.5 to 1.0 nm were reported in the thicknesses by ellipsometry, X-ray reflectometry (XRR), medium-energy ion scattering spectrometry (MEIS), Rutherford backscattering spectroscopy (RBS), nuclear reaction analysis (NRA), and transmission electron microscopy (TEM). However, the offset value for the thicknesses by X-ray photoelectron spectroscopy (XPS) was close to zero (−0.013 nm). From these results, the mutual calibration method was reported for the thickness measurement of SiO2 films on Si(100) by combination of TEM and XPS. The mutual calibration method has been applied for the thickness measurements of hetero oxide films such as Al2O3 and HfO2. Recently, the effect of surface contamination was reported to be critical to the thickness measurement of HfO2 films by XPS. On the other hand, MEIS was proved to be a powerful zero offset method which is not affected by the surface contamination. As a result, the reference thicknesses in the CCQM pilot study P-190 for the thickness measurement of HfO2 films on Si(100) substrate were determined by mutual calibration method from the average XRR data and MEIS analysis. Conclusively, the thicknesses of ultrathin oxide films can be traceably certified by mutual calibration method and most thickness measurement methods can be calibrated from the certified thicknesses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号