首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1143篇
  免费   124篇
  国内免费   18篇
化学   1147篇
晶体学   3篇
力学   2篇
综合类   12篇
数学   19篇
物理学   102篇
  2024年   1篇
  2023年   22篇
  2022年   52篇
  2021年   51篇
  2020年   89篇
  2019年   35篇
  2018年   24篇
  2017年   25篇
  2016年   48篇
  2015年   60篇
  2014年   53篇
  2013年   95篇
  2012年   75篇
  2011年   65篇
  2010年   58篇
  2009年   61篇
  2008年   60篇
  2007年   75篇
  2006年   73篇
  2005年   43篇
  2004年   38篇
  2003年   25篇
  2002年   33篇
  2001年   10篇
  2000年   19篇
  1999年   24篇
  1998年   10篇
  1997年   14篇
  1996年   7篇
  1995年   14篇
  1994年   4篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1985年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有1285条查询结果,搜索用时 15 毫秒
31.
32.
Labeled RNAs are invaluable probes for investigation of RNA function and localization. However, mRNA labeling remains challenging. Here, we developed an improved method for 3′-end labeling of in vitro transcribed RNAs. We synthesized novel adenosine 3′,5′-bisphosphate analogues modified at the N6 or C2 position of adenosine with an azide-containing linker, fluorescent label, or biotin and assessed these constructs as substrates for RNA labeling directly by T4 ligase or via postenzymatic strain-promoted alkyne-azide cycloaddition (SPAAC). All analogues were substrates for T4 RNA ligase. Analogues containing bulky fluorescent labels or biotin showed better overall labeling yields than postenzymatic SPAAC. We successfully labeled uncapped RNAs, NAD-capped RNAs, and 5′-fluorescently labeled m7Gp3Am-capped mRNAs. The obtained highly homogenous dually labeled mRNA was translationally active and enabled fluorescence-based monitoring of decapping. This method will facilitate the use of various functionalized mRNA-based probes.  相似文献   
33.
34.
35.
A G-quadruplex is a nucleic acid secondary structure that is adopted by guanine-rich sequences, and is considered to be relevant in various pharmacological and biological contexts. G-Quadruplexes have also attracted great attention in the field of DNA nanotechnology because of their extremely high thermal stability and the availability of many defined structures. To date, a large repertory of DNA/RNA G-quadruplex-interactive ligands has been developed by numerous laboratories. Several relevant reviews have also been published that have helped researchers to grasp the full scope of G-quadruplex research from its outset to the present. This review focuses on the G-quadruplex ligands that allow targeting of specific G-quadruplexes. Moreover, unique ligands, successful methodologies, and future perspectives in relation to specific G-quadruplex recognition are also addressed.  相似文献   
36.
As chiral molecules, naturally occurring d -oligonucleotides have enantiomers, l -DNA and l -RNA, which are comprised of l -(deoxy)ribose sugars. These mirror-image oligonucleotides have the same physical and chemical properties as that of their native d -counterparts, yet are highly orthogonal to the stereospecific environment of biology. Consequently, l -oligonucleotides are resistant to nuclease degradation and many of the off-target interactions that plague traditional d -oligonucleotide-based technologies; thus making them ideal for biomedical applications. Despite a flurry of interest during the early 1990s, the inability of d - and l -oligonucleotides to form contiguous Watson–Crick base pairs with each other has ultimately led to the perception that l -oligonucleotides have only limited utility. Recently, however, scientists have begun to uncover novel strategies to harness the bio-orthogonality of l -oligonucleotides, while overcoming (and even exploiting) their inability to Watson–Crick base pair with the natural polymer. Herein, a brief history of l -oligonucleotide research is presented and emerging l -oligonucleotide-based technologies, as well as their applications in research and therapy, are presented.  相似文献   
37.
《化学:亚洲杂志》2018,13(14):1791-1796
The development of highly efficient bioorthogonal reactions is of paramount importance for the research fields of biomaterials and chemical biology. We found that the o,o′‐difluorinated aromatic azide was able to react with triphenylphosphine to produce water‐stable phosphanimine. To further improve the efficiency of this kind of nonhydrolysis Staudinger reaction, a tetrafluorinated aromatic azide was employed to develop a faster nonhydrolysis Staudinger reaction with a rate of up to 51 m −1 s−1, as revealed by high‐performance liquid chromatography (HPLC) analysis and fluorescence kinetics. As a proof‐of‐concept study, the highly efficient Staudinger reaction was successfully used for chemoselective fluorescence labeling of proteins and nucleic acids (DNA and RNA) as well as for protein polyethyleneglycol (PEG)ylation. We believe that this bioorthogonal reaction can provide a broadly useful tool for various bioconjugations.  相似文献   
38.
39.
G-quadruplexes (G4) are the most actively studied non-canonical secondary structures formed by contiguous repeats of guanines in DNA or RNA strands. Small molecule mediated targeting of G-quadruplexes has emerged as an attractive tool for visualization and stabilization of these structures inside the cell. Limited number of DNA and RNA G4-selective assays have been reported for primary ligand screening. A combination of fluorescence spectroscopy, AFM, CD, PAGE, and confocal microscopy have been used to assess a dimeric carbocyanine dye B6,5 for screening G4-binding ligands in vitro and in cellulo. The dye B6,5 interacts with physiologically relevant DNA and RNA G4 structures, resulting in fluorescence enhancement of the molecule as an in vitro readout for G4 selectivity. Interaction of the dye with G4 is accompanied by quadruplex stabilization that extends its use in primary screening of G4 specific ligands. The molecule is cell permeable and enables visualization of quadruplex dominated cellular regions of nucleoli using confocal microscopy. The dye is displaced by quarfloxin in live cells. The dye B6,5 shows remarkable duplex to quadruplex selectivity in vitro along with ligand-like stabilization of DNA G4 structures. Cell permeability and response to RNA G4 structures project the dye with interesting theranostic potential. Our results validate that B6,5 can serve the dual purpose of visualization of DNA and RNA G4 structures and screening of G4 specific ligands, and adds to the limited number of probes with such potential.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号