首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1146篇
  免费   124篇
  国内免费   18篇
化学   1149篇
晶体学   3篇
力学   2篇
综合类   12篇
数学   19篇
物理学   103篇
  2024年   1篇
  2023年   22篇
  2022年   55篇
  2021年   51篇
  2020年   89篇
  2019年   35篇
  2018年   24篇
  2017年   25篇
  2016年   48篇
  2015年   60篇
  2014年   53篇
  2013年   95篇
  2012年   75篇
  2011年   65篇
  2010年   58篇
  2009年   61篇
  2008年   60篇
  2007年   75篇
  2006年   73篇
  2005年   43篇
  2004年   38篇
  2003年   25篇
  2002年   33篇
  2001年   10篇
  2000年   19篇
  1999年   24篇
  1998年   10篇
  1997年   14篇
  1996年   7篇
  1995年   14篇
  1994年   4篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1985年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有1288条查询结果,搜索用时 15 毫秒
151.
A novel protocol for all‐atom RNA tertiary structure prediction is presented that uses restrained molecular mechanics and simulated annealing. The restraints are from secondary structure, covariation analysis, coaxial stacking predictions for helices in junctions, and, when available, cross‐linking data. Results are demonstrated on the Alu domain of the mammalian signal recognition particle RNA, the Saccharomyces cerevisiae phenylalanine tRNA, the hammerhead ribozyme, the hepatitis C virus internal ribosomal entry site, and the P4–P6 domain of the Tetrahymena thermophila group I intron. The predicted structure is selected from a pool of decoy structures with a score that maximizes radius of gyration and base–base contacts, which was empirically found to select higher quality decoys. This simple ab initio approach is sufficient to make good predictions of the structure of RNAs compared to current crystal structures using both root mean square deviation and the accuracy of base–base contacts. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   
152.
Changing ocean-carbonate chemistry caused by oceanic uptake of anthropogenic atmospheric carbon dioxide leads to the formation of carbonic acid, thus lowering the pH of the sea with predictions of a decrease from current levels at 8.15 to 7.82 by the end of the century. The exact measurement of subtle pH changes in seawater over time presents significant analytical challenges, as the equilibrium constants are governed by water temperature and pressure, salinity effects, and the existence of other ionic species in seawater.Here, we review these challenges and how pH also affects dissolved inorganic and organic chemicals that affect biological systems. This includes toxic compounds (xenobiotics) as well as chemicals that are beneficial for marine organisms, such as the chemical signals (i.e. pheromones) that are utilized to coordinate animal behavior. We review how combining analytical, molecular and biochemical tools can lead to the development of biosensors to detect pH effects to enable predictive modeling of the ecological consequences of ocean acidification.  相似文献   
153.
Plasmid DNA (pDNA) is purified directly from alkaline lysis-derived Escherichia coli (E. coli) lysates by phenyl boronate (PB) chromatography. The method explores the ability of PB ligands to bind covalently, but reversibly, to cis-diol-containing impurities like RNA and lipopolysaccharides (LPS), leaving pDNA in solution. In spite of this specificity, cis-diol free species like proteins and genomic DNA (gDNA) are also removed. This is a major advantage since the process is designed to keep the target pDNA from binding. The focus of this paper is on the study of the secondary interactions between the impurities (RNA, gDNA, proteins, LPS) in a pDNA-containing lysate and 3-amino PB controlled pore glass (CPG) matrices. Runs were designed to evaluate the role of adsorption buffer composition, feed type (pH, salt content), CPG matrix and sample pretreatment (RNase A, isopropanol precipitation). Water was chosen as the adsorption buffer over MgCl(2) solutions since it maximised pDNA yield (96.2±4.9%) and protein removal (61.3±3.0%), while providing for a substantial removal of RNA (65.5±3.5%) and gDNA (44.7±14.1%). Although the use of pH 3.5 maximised removal of impurities (~75%), the best compromise between plasmid yield (~96%) and RNA clearance (~60-70%) was obtained for a pH of 5.2. Plasmid yield was maximal (>96%) when the concentration of acetate and potassium ions in the incoming lysate feed were 1.7 M and 1.0 M, respectively. The pre-treatment of lysates with RNase A deteriorated the performance since the resulting oligoribonucleotides lack the cis-diol group at their 3' termini. Overall, the results support the idea that charge transfer interactions between the boron atom at acidic pH and electron donor groups in the aromatic bases of nucleic acids and side residues of proteins are responsible for the non-specific removal of gDNA, RNA and proteins.  相似文献   
154.
Cyclooxygenase-2 (COX-2) is an important enzyme in inflammation. In this study, we investigated the underlying molecular mechanism of the synergistic effect of rottlerin on interleukin1β (IL-1β)-induced COX-2 expression in MDA-MB-231 human breast cancer cell line. Treatment with rottlerin enhanced IL-1β-induced COX-2 expression at both the protein and mRNA levels. Combined treatment with rottlerin and IL-1β significantly induced COX-2 expression, at least in part, through the enhancement of COX-2 mRNA stability. In addition, rottlerin and IL-1β treatment drove sustained activation of p38 Mitogen-activated protein kinase (MAPK), which is involved in induced COX-2 expression. Also, a pharmacological inhibitor of p38 MAPK (SB 203580) and transient transfection with inactive p38 MAPK inhibited rottlerin and IL-1β-induced COX-2 upregulation. However, suppression of protein kinase C δ (PKC δ) expression by siRNA or overexpression of dominant-negative PKC δ (DN-PKC-δ) did not abrogate the rottlerin plus IL-1β-induced COX-2 expression. Furthermore, rottlerin also enhanced tumor necrosis factor-α (TNF-α), phorbol myristate acetate (PMA), and lipopolysaccharide (LPS)-induced COX-2 expression. Taken together, our results suggest that rottlerin causes IL-1β-induced COX-2 upregulation through sustained p38 MAPK activation in MDA-MB-231 human breast cancer cells.  相似文献   
155.
156.
Nucleic acids are essential biomolecules in living systems and represent one of the main targets of chemists, biophysics, biologists, and nanotechnologists. New small molecules are continuously developed to target the duplex (ds) structure of DNA and, most recently, RNA to be used as therapeutics and/or biological tools. Stimuli-triggered systems can promote and hamper the interaction to biomolecules through external stimuli such as light and metal coordination. In this work, we report on the interaction with ds-DNA and ds-RNA of two aza-macrocycles able to coordinate Zn2+ metal ions and form binuclear complexes. The interaction of the aza-macrocycles and the Zn2+ metal complexes with duplex DNA and RNA was studied using UV thermal and fluorescence indicator displacement assays in combination with theoretical studies. Both ligands show a high affinity for ds-DNA/RNA and selectivity for ds-RNA. The ability to interact with these duplexes is blocked upon Zn2+ coordination, which was confirmed by the low variation in the melting temperature and poor displacement of the fluorescent dye from the ds-DNA/RNA. Cell viability assays show a decrease in the cytotoxicity of the metal complexes in comparison with the free ligands, which can be associated with the observed binding to the nucleic acids.  相似文献   
157.
The work is devoted to the study of the complementarity of the electronic structures of the ligands and SARS-CoV-2 RNA-dependent RNA polymerase. The research methodology was based on determining of 3D maps of electron densities of complexes using an original quantum free-orbital AlteQ approach. We observed a positive relationship between the parameters of the electronic structure of the enzyme and ligands. A complementarity factor of the enzyme-ligand complexes has been proposed. The console applications of the AlteQ complementarity assessment for Windows and Linux (alteq_map_enzyme_ligand_4_win.exe and alteq_map_enzyme_ligand_4_linux) are available for free at the ChemoSophia webpage.  相似文献   
158.
159.
160.
Existing experimental studies of the thermal denaturation of DNA yield sharp steps in the melting curve suggesting that the melting transition is first order. This transition has been theoretically studied since the early sixties, mostly within an approach in which the microscopic configurations of a DNA molecule consist of an alternating sequence of non-interacting bound segments and denaturated loops. Studies of these models neglect the repulsive, self-avoiding, interaction between different loops and segments and have invariably yielded continuous denaturation transitions. In the present study we take into account in an approximate way the excluded-volume interaction between denaturated loops and the rest of the chain. This is done by exploiting recent results on scaling properties of polymer networks of arbitrary topology. We also ignore the heterogeneity of the polymer. We obtain a first-order melting transition in d = 2 dimensions and above, consistent with the experimental results. We also consider within our approach the unzipping transition, which takes place when the two DNA strands are pulled apart by an external force acting on one end. We find that the under equilibrium condition the unzipping transition is also first order. Although the denaturation and unzipping transitions are thermodynamically first order, they do exhibit critical fluctuations in some of their properties. For instance, the loop size distribution decays algebraically at the transition and the length of the denaturated end segment diverges as the transition is approached. We evaluate these critical properties within our approach. Received 21 August 2001 and Received in final form 26 January 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号