首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1140篇
  免费   124篇
  国内免费   18篇
化学   1144篇
晶体学   3篇
力学   2篇
综合类   12篇
数学   19篇
物理学   102篇
  2024年   1篇
  2023年   22篇
  2022年   49篇
  2021年   51篇
  2020年   89篇
  2019年   35篇
  2018年   24篇
  2017年   25篇
  2016年   48篇
  2015年   60篇
  2014年   53篇
  2013年   95篇
  2012年   75篇
  2011年   65篇
  2010年   58篇
  2009年   61篇
  2008年   60篇
  2007年   75篇
  2006年   73篇
  2005年   43篇
  2004年   38篇
  2003年   25篇
  2002年   33篇
  2001年   10篇
  2000年   19篇
  1999年   24篇
  1998年   10篇
  1997年   14篇
  1996年   7篇
  1995年   14篇
  1994年   4篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1985年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有1282条查询结果,搜索用时 625 毫秒
101.
The review surveys the results of our studies devoted to the design of highly efficient catalysts of hydrolysis of the phosphodiester bonds in RNA. These catalysts contain the imidazole residue in the catalytic domain, one or several bis-quaternized rings of 1,4-diazabicyclo[2.2.2]octane as a polycationic RNA-binding domain, and a lipophilic radical. A versatile approach to artificial ribonucleases of this type was proposed, which allows one to vary not only the number of positive charges in the RNA-binding domain, the structure of the catalytic site, and their mutual arrangement but also the domain structure of the molecule as a whole. Analysis of the catalytic properties of the synthesized constructs makes it possible to optimize the domain structure and the geometry of the molecule ensuring its maximum ribonuclease activity.  相似文献   
102.
Background: The translation or stability of the mRNAs from ferritin, m-aconitase, erythroid aminoevulinate synthase and the transferrin receptor is controlled by the binding of two iron regulatory proteins to a family of hairpin-forming RNA sequences called iron-responsive elements (IREs). The determination of higher-solution nuclear magnetic resonance (NMR) structures of IRE variants suggests an unusual hexaloop structure, leading to an intra-loop G-C base pair and a highly exposed loop guanine, and a special internal loop/bulge in the ferritin IRE involving a shift in base pairing not predicted with standard algorithms.Results: Cleavage of synthetic 55- and 30-mer RNA oligonucleotides corresponding to the ferritin IRE with complexes based on oxoruthenium(IV) shows enhanced reactivity at a hexaloop guanine and at a guanine adjacent to the internal loop/bulge with strong protection at a guanine in the internal loop/bulge. These results are consistent with the recent NMR structures. The synthetic 55-mer RNA binds the iron-regulatory protein from rabbit reticulocyte lysates. The DNA analogs of the 55- and 30-mers do not show the same reactivity pattern.Conclusions: The chemical reactivity of the guanines in the ferritin IRE towards oxoruthenium(IV) supports the published NMR structures and the known oxidation chemistry of the metal complexes, The results constitute progress towards developing stand-alone chemical nucleases that reveal significant structural properties and provide results that can ultimately be used to constrain molecular modeling.  相似文献   
103.
The unzipping transition under the influence of external force of a dsDNA molecule has been studied using the Peyrard-Bishop Hamiltonian. The critical force Fc(T) for unzipping calculated in the constant force ensemble is found to depend on the potential parameter k which measures the stiffness associated with a single strand of DNA and on D, the well depth of the on-site potential representing the strength of hydrogen bonds in a base pair. The dependence on temperature of Fc(T) is found to be (TD - T)1/2 (TD being the thermal denaturation temperature) with Fc(TD) = 0 and Fc(0) = . We used the constant extension ensemble to calculate the average force F(y) required to stretch a base pair a y distance apart. The value of F(y) needed to stretch a base pair located far away from the ends of a dsDNA molecule is found twice the value of the force needed to stretch a base pair located at one of the ends to the same distance for y 1.0 . The force F(y) in both cases is found to have a very large value for y 0.2 compared to the critical force found from the constant force ensemble to which F(y) approaches for large values of y. It is shown that the value of F(y) at the peak depends on the value of k which measures the energy barrier associated with the reduction in DNA strand rigidity as one passes from dsDNA to ssDNA and on the value of the depth of the on-site potential. The effect of defects on the position and height of the peak in the F(y) curve is investigated by replacing some of the base pairs including the one being stretched by defect base pairs. The formation and behaviour of a loop of Y shape when one of the ends base pair is stretched and a bubble of ssDNA with the shape of an eye when a base pair far from ends is stretched are investigated.  相似文献   
104.
Bacterial viruses (bacteriophages) consist of nucleic acid protected by a protein envelope called capsid. At the start of infection, the phage genome is translocated into the bacterial cytoplasm. In vitro (and also in vivo), this DNA release can be triggered by binding a specific receptor protein to the phage tail. The force responsible for the release arises from energy stored in the capsid due to strong confinement of the DNA. We show that this force can be modified by adding molecules like spermine that affect DNA conformation. The tetravalent cation spermine can reduce the pressure inside the capsid and induce condensation of the released DNA. We examine the effect of spermine on DNA ejection from phage T5 by using light scattering and gel electrophoresis to measure the amount of DNA remaining in the capsid at the end of ejection. We discuss the results in terms of free energy minimization and we demonstrate that the presence of a DNA condensate outside the phage generates an additional force pulling passively on the DNA remaining inside the capsid.  相似文献   
105.
106.
107.
108.
RNA is an important target for drug discovery efforts. Several clinically used aminoglycoside antibiotics bind to bacterial rRNA and inhibit protein synthesis. Aminoglycosides, however, are losing efficacy due to their inherent toxicity and the increase in antibiotic resistance. Targeting of other RNAs is also becoming more attractive thanks to the discovery of new potential RNA drug targets through genome sequencing and biochemical efforts. Identification of new compounds that target RNA is therefore urgent, and we report here on the development of rapid screening methods to probe binding of low molecular weight ligands to proteins and RNAs. A series of aminoglycosides has been immobilized onto glass microscope slides, and binding to proteins and RNAs has been detected by fluorescence. Construction and analysis of the arrays is completed by standard DNA genechip technology. Binding of immobilized aminoglycosides to proteins that are models for study of aminoglycoside toxicity (DNA polymerase and phospholipase C), small RNA oligonucleotide mimics of aminoglycoside binding sites in the ribosome (rRNA A-site mimics), and a large (approximately 400 nucleotide) group I ribozyme RNA is detected. The ability to screen large RNAs alleviates many complications associated with binding experiments that use isolated truncated regions from larger RNAs. These studies lay the foundation for rapid identification of small organic ligands from combinatorial libraries that exhibit strong and selective RNA binding while displaying decreased affinity to toxicity-causing proteins.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号