首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3262篇
  免费   222篇
  国内免费   238篇
化学   3021篇
晶体学   10篇
力学   14篇
综合类   8篇
数学   218篇
物理学   451篇
  2024年   8篇
  2023年   110篇
  2022年   46篇
  2021年   90篇
  2020年   116篇
  2019年   92篇
  2018年   75篇
  2017年   78篇
  2016年   136篇
  2015年   145篇
  2014年   146篇
  2013年   202篇
  2012年   204篇
  2011年   244篇
  2010年   199篇
  2009年   259篇
  2008年   220篇
  2007年   205篇
  2006年   216篇
  2005年   201篇
  2004年   154篇
  2003年   110篇
  2002年   63篇
  2001年   58篇
  2000年   42篇
  1999年   55篇
  1998年   43篇
  1997年   41篇
  1996年   16篇
  1995年   29篇
  1994年   25篇
  1993年   19篇
  1992年   10篇
  1991年   10篇
  1990年   10篇
  1989年   6篇
  1988年   5篇
  1987年   6篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有3722条查询结果,搜索用时 734 毫秒
201.
A photoaffinity labeling (PAL)‐based method for the rapid identification of target proteins is presented in which a high‐performance chemical tag, an isotope‐coded fluorescent tag (IsoFT), can be attached to the interacting site by irradiation. Labeled peptides can be easily distinguished among numerous proteolytic digests by sequential detection with highly sensitive fluorescence spectroscopy and mass spectrometry. Subsequent MS/MS analysis provides amino acid sequence information with a higher depth of coverage. The combination of PAL and heterogeneous target‐selecting techniques significantly reduces the amount of time and protein required for identification. An additional photocleavable moiety successfully accelerated proteomic analysis using cell lysate. This method is a widely applicable approach for the rapid and accurate identification of interacting proteins.  相似文献   
202.
提出了气相色谱-质谱法测定水产品中1,3-二氯苯,1,2-二氯苯,1,2,4-三氯苯等3种氯苯类化合物含量的方法。采用荧光猝灭法研究了氯苯类化合物与蛋白质之间的结合作用,结果表明氯苯类化合物与鱼血清白蛋白之间存在较强的结合作用。水产品样品以丙酮-磷酸氢二钾-水双水相体系进行前处理。在气相色谱分离中用DB-WAX毛细管色谱柱为固定相,在质谱分析中采用选择离子监测模式。3种氯苯类化合物的质量浓度均在0.5~5.0mg·L-1范围内与其峰面积呈线性关系。以空白样品为基体进行加标回收试验,所得回收率在77.0%~116%之间,相对标准偏差(n=6)在2.6%~7.1%之间。  相似文献   
203.
建立了金属标记结合高效液相色谱-选择性离子监测质谱(SIM)的蛋白质绝对定量新方法。实验考察了金属标记效率、金属标记的稳定性、标记后肽段的色谱保留和质谱行为、新定量方法的线性范围和准确度。实验结果表明金属标记具有标记效率高,稳定性好,色谱保留行为一致等优点。另外,金属标记-选择离子监测质谱绝对定量方法灵敏度高,其定量限低至1 fmol,线性范围为1~500 fmol,线性范围内R2值大于0.99,具有良好的线性关系;经过测量,标准肽段的回收率为117.01%,说明该方法具有较高的准确度。将该方法应用于腾冲嗜热菌中烯醇酶蛋白的定量分析,相对标准偏差为5.47%,表明该方法的精密度高。以上结果表明该方法可以用于生物样本中的蛋白质的绝对定量分析,为比较简单的生物样本中蛋白质的绝对定量方法提供了一种新的选择。  相似文献   
204.
The spatial arrangement of chromosome within the nucleus is linked to genome function and gene expression regulation. Existing genome-wide mapping methods often rely on chemically crosslinking DNA with protein baits, which raises concerns of artifacts being introduced during cell fixation. By genetically targeting a photosensitizer protein to specific subnuclear locations, we achieved blue-light-activated labeling of local DNA with a bioorthogonal functional handle for affinity purification and sequence identification through next-generation sequencing. When applied to the nuclear lamina in human embryonic kidney 293T cells, it revealed lamina-associated domains (LADs) that cover 37.6 % of the genome. These LADs overlap with heterochromatin hallmarks and are depleted with CpG islands. This simple labeling method avoids the harsh treatment of chemical crosslinking and is generally applicable to the genome-wide high-resolution mapping of the spatial chromosome organization in living cells.  相似文献   
205.
The present study reports the results of structural and mechanical analysis, as well as proteins release kinetics and osteointegration in mice craniotomy model of highly porous PEEK (PolyEther Ether Ketone) and PEEK/HA (PolyEther Ether Ketone/HydroxyApatite) biomimetic scaffolds loaded with Escherichia coli-derived recombinant Bone Morphogenetic Protein-2 (BMP-2) and ErythroPOietin (EPO). Porous scaffolds were obtained by thermopressing with NaCl as a pore-forming filler. Two fractions of pore-forming filler were used to imitate natural trabecular bone tissue by making a preferential porosity using large fraction and creating an extended surface and special microrelief using small fraction. Hydroxyapatite (HA) was added up to 20% to activate bioinert PEEK providing loading of recombinant growth factors and osteointegration as well as sufficient level of mechanical properties imitating human trabecular bone. Unexpectedly, the non-activated PEEK produced by our technology was also able to spontaneously bind both BMP-2 and EPO. Loading of both BMP-2 and EPO to both types of implants resulted in enhanced neoosteogenesis and angiogenesis in a critical-size cranial defect model in mice in 3–6 weeks. Considering good mechanical characteristics and excellent osteoinductive and angiogenic properties, both materials in combination with BMP-2 and EPO can find their application in regenerative medicine.  相似文献   
206.
Seaweed (macroalgae) is considered as a sustainable bioresource rich in high-quality nutrients such as protein. Seaweed protein can be used as an alternative to other protein sources. Furthermore, these proteins are natural reservoirs of bioactive peptides (BAPs) associated with various health benefits such as antioxidant, antihypertensive, and antidiabetic activities. However, seaweed-derived BAPs remain underexploited due to challenges that arise during protein extraction from algal biomass. Coupled with this, limited proteomic information exists regarding certain seaweed species. This review highlights the current state of the art of seaweed protein extraction techniques, e.g., liquid, ultrasound, microwave, pulsed electric field, and high hydrostatic pressure assisted extraction. The review also focuses on the enzymatic hydrolysis of seaweed proteins and characterization of the resultant hydrolysates/peptides using electrophoretic and chromatographic techniques. This includes reference to methods employed for separation, fractionation, and purification of seaweed BAPs, as well as the methodologies used for identification, e.g., analysis by mass spectrometry. Furthermore, a bioinformatics or in silico approach to aid discovery of seaweed BAPs is discussed herein. Based on the information available to date, it is suggested that further research is required in this area for the development of seaweed BAPs for nutraceutical applications.  相似文献   
207.
The use of ionic liquids in capillary electrophoresis, either as coating material or as components of the background electrolyte needs systematic standardization to set up optimal conditions. Excellent separation of the proteins was achieved using 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]) or 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) ionic liquids using the properly made ionic-liquid–water binary mixtures for the experiments. The binary mixture has a distinctly stable and well perceptible low pH, which depends on the concentration of the ionic liquid, and on the preparation time of the mixture. Optimal conditions for the electrophoretic separation were obtained upon a multivariate analysis of the experimental parameters (applied voltage, migration time, concentration, and type of the ionic liquid). The standardized condition provides a low electroendosmotic flow toward the anode, which, however, did not hinder the proteins to migrate toward the cathode. The migration of cytochrome c, lysozyme, myoglobin, trypsin, and apo-transferrin at a pH around 2, far below the isoelectric points of the proteins, showed RSD values of the migration times less than 7.5% and less than 6.5% when using [emim][BF4] or [bmim][BF4], respectively, either in run-to-run or day-to-day experiments. The determination of the extent of the EOF is not possible with the commonly used EOF markers, due to interaction with the ionic-liquid constituents. The interaction of the ionic liquids with the proteins influences the migration order in zone electrophoresis. This method has been applied successfully for the analyses of real biological samples such as proteins from egg whites and human tears.  相似文献   
208.
Protein phosphorylation is a crucial post-translational modification that plays an important role in the regulation of cellular signaling processes. Site-specific quantitation of phosphorylation levels can help decipher the physiological functions of phosphorylation modifications under diverse physiological statuses. However, quantitative analysis of protein phosphorylation degrees is still a challenging task due to its dynamic nature and the lack of an internal standard simultaneously available for the samples differently prepared for various phosphorylation extents. In this study, stable-isotope dimethyl labeling coupled with phosphatase dephosphorylation (DM + deP) was tried to determine the site-specific degrees of phosphorylation in proteins. Firstly, quantitation accuracy of the (DM + deP) approach was confirmed using synthetic peptides of various simulated phosphorylation degrees. Afterwards, it was applied to evaluate the phosphorylation stoichiometry of milk caseins. The phosphorylation degree of Ser130 on α-S1-casein was also validated by absolute quantification with the corresponding synthetic phosphorylated and nonphosphorylated peptides under a selected reaction monitoring (SRM) mode. Moreover, this (DM + deP) method was used to detect the phosphorylation degree change of Ser82 on the Hsp27 protein of HepG2 cells caused by tert-butyl hydroperoxide (t-BHP) treatment. The results showed that the absolute phosphorylation degree obtained from the (DM + deP) approach was comparable with the relative quantitation resulting from stable-isotope dimethyl labeling coupled with TiO2 enrichment. This study suggested that the (DM + deP) approach is promising for absolute quantification of site-specific degrees of phosphorylation in proteins, and it may provide more convincing information than the relative quantification method.  相似文献   
209.
Protected by the host cells, the hidden intracellular bacteria are typically difficult to kill by common antibiotics and cannot be visualized without complex cellular pretreatments. Herein, we successfully developed a bacteria‐metabolizable dual‐functional probe TPEPy‐d ‐Ala, which is based on d ‐alanine and a photosensitizer with aggregation‐induced emission for fluorescence turn‐on imaging of intracellular bacteria in living host cells and photodynamic ablation in situ. Once metabolically incorporated into bacterial peptidoglycan, the intramolecular motions of TPEPy‐d ‐Ala are inhibited, leading to an enhanced fluorescent signal, which allows the clear visualization of the intracellular bacteria. Moreover, TPEPy‐d ‐Ala can effectively ablate the labeled intracellular bacteria in situ owing to covalent ligation to peptidoglycan, yielding a low intracellular minimum inhibitory concentration (MIC) of 20±0.5 μg mL?1, much more efficient than that of a commonly used antibiotic, vancomycin.  相似文献   
210.
Ruthenium is a platinoid that exhibits a range of unique chemical properties in solution, which are exploited in a variety of applications, including luminescent probes, anticancer therapies, and artificial photosynthesis. This paper focuses on a recently demonstrated ability of this metal in its +3 oxidation state to form highly stable complexes with tris (hydroxymethyl)aminomethane (H2NC(CH2OH)3, Tris‐base or T) and imidazole (Im) ligands, where a single RuIII cation is coordinated by two molecules of each T and Im. High‐resolution electrospray ionization mass spectrometry (ESI MS) is used to characterize RuIII complexes formed by placing a RuII complex [(NH3)5RuIICl]Cl in a Tris buffer under aerobic conditions. The most abundant ionic species in ESI MS represent mononuclear complexes containing an oxidized form of the metal, ie, [XnRuIIIT2 – 2H]+, where X could be an additional T (n = 1) or NH3 (n = 0‐2). Di‐ and tri‐metal complexes also give rise to a series of abundant ions, with the highest mass ion representing a metal complex with an empirical formula Ru3C24O21N6H66 (interpreted as cyclo(T2RuO)3, a cyclic oxo‐bridged structure, where the coordination sphere of each metal is completed by two T ligands). The empirical formulae of the binuclear species are consistent with the structures representing acyclic fragments of cyclo(T2RuO)3 with addition of various combinations of ammonia and dioxygen as ligands. Addition of histidine in large molar excess to this solution results in complete disassembly of poly‐nuclear complexes and gives rise to a variety of ionic species in the ESI mass spectrum with a general formula [RuIIIHiskTm (NH3)n ? 2H]+, where k = 0 to 2, m = 0 to 3, and n = 0 to 4. Ammonia adducts are present for all observed combinations of k and m, except k = m = 2, suggesting that [His2RuIIIT2 ? 2H]+ represents a complex with a fully completed coordination sphere. The observed cornucopia of RuIII complexes formed in the presence of histidine is in stark contrast to the previously reported selective reactivity of imidazole, which interacts with the metal by preserving the RuT2 core and giving rise to a single abundant ruthenium complex (represented by [Im2RuIIIT2 ? 2H]+ in ESI mass spectra). Surprisingly, the behavior of a hexa‐histidine peptide (HHHHHH) is similar to that of a single imidazole, rather than a single histidine amino acid: The RuT2 core is preserved, with the following ionic species observed in ESI mass spectra: [HHHHHH·(RuIIIT2)m ? (3m‐1)H]+ (m = 1‐3). The remarkable selectivity of the imidazole interaction with the RuIIIT2 core is rationalized using energetic considerations at the quantum mechanical level of theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号