首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3271篇
  免费   222篇
  国内免费   238篇
化学   3029篇
晶体学   10篇
力学   14篇
综合类   8篇
数学   218篇
物理学   452篇
  2024年   11篇
  2023年   111篇
  2022年   50篇
  2021年   90篇
  2020年   116篇
  2019年   92篇
  2018年   75篇
  2017年   78篇
  2016年   136篇
  2015年   145篇
  2014年   146篇
  2013年   202篇
  2012年   204篇
  2011年   244篇
  2010年   199篇
  2009年   260篇
  2008年   220篇
  2007年   205篇
  2006年   216篇
  2005年   201篇
  2004年   154篇
  2003年   110篇
  2002年   63篇
  2001年   58篇
  2000年   42篇
  1999年   55篇
  1998年   43篇
  1997年   41篇
  1996年   16篇
  1995年   29篇
  1994年   25篇
  1993年   19篇
  1992年   10篇
  1991年   10篇
  1990年   10篇
  1989年   6篇
  1988年   5篇
  1987年   6篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有3731条查询结果,搜索用时 15 毫秒
181.
As one of the most common unnatural amino acids(uAAs), α, β-dehydroamino acids(α,β-dhAAs) can be found in various ribosomally synthesized and post-translationally modified peptides(RiPPs) and other naturally occurring peptides. In recent years, novel reactions for α,β-dhAA modification continue to emerge. Due to their unique electrophilicity different from 20 natural amino acids, α,β-dhAAs, especially dehydroalanine(Dha), have become powerful tools for site-selective protein modification. In this review, we mainly focus on the latest research progress of C-C and C-heteroatom(C-X, X=S, N, Se, Si, P, B) bond formation methods based on α,β-dhAAs in the past five years. Particularly, we pay much attention to the α,β-dhAA derivatization methodologies used in the late-stage modification for natural peptides and proteins. In addition, we also focus on the downstream functionalization and therapeutic biologic applications of these modifications.  相似文献   
182.
183.
Attempts are made to efficiently decouple (13)C nuclei without significant loss of coherence during the application of the decoupling package. Such attempts are based on the S(3)E spin-state selection method. A newly developed double S(3)E (DS(3)E) is particularly efficient for C(alpha) detection for proteins as large as 480 kDa.  相似文献   
184.
In solution, hypochlorous acid (HOCl) reacts with organic matter and notably with protein side-chains. In this study, HOCl was produced by an electrochemical way, by oxidation of chloride ions at a transparent tin dioxide electrode in the presence of a protein, the bovine serum albumin (BSA). A thick irregular layer is formed at the electrode when HOCl is produced at the SnO2 surface. Indeed, SEM analyses show that an important deposit is formed during the anodic polarization of SnO2 in the presence of chloride ions and proteins. Actually, two phenomena take place on the one hand the chlorination of the proteins due to the reaction of HOCl with some protein side-chains and on the other hand the aggregation of proteins onto the SnO2 surface. The present X-ray photoelectron spectroscopy study points out the cross-linking of BSA molecules via formation of inter molecular sulfonamide groups. It also shows that the BSA chlorination is due on the one hand to the formation of sulfonyl chloride groups (-SO2Cl) and on the other hand to formation of chloramine groups (N-Cl). The Cl2p and S2p photo-peak intensities allowed us to quantify the chloramines. It is found that, one BSA entity immobilized onto the SnO2 surface contains about 50 chloramine groups.  相似文献   
185.
Western blot (protein immunoblot) is a widely used analytical technique in molecular biology. Utilizing the specific recognizing primary antibody, proteins immobilized on various matrix are investigated by subsequent visualization steps, for example, by the horse radish peroxidase conjugated secondary antibody incubation. Methods to improve the sensitivity in protein identification or quantification are appreciated by biochemists. Herein, we report a new strategy to amplify Western blot signals by constructing a probe with proximal labeling and IgG targeting abilities. The R118G mutation attenuated the biotin-AMP binding affinity of the bacterial biotin ligase BirA*, offering a proximity-dependent labeling ability, which could be used as a signal amplifier. We built a BirA*-protein A fusion protein (BioEnhancer) that specifically binds to IgG and adds biotin tags to its proximal amine groups, enhancing the immunosignal of target proteins. In our experiments, the BioEnhancer system amplified the immunosignal by tenfold compared to the standard western blot. Additionally, our strategy could couple with other signal enhancement methods to further increase the western blot sensitivity.  相似文献   
186.
In the present study, controlled protein adsorption on a rigid silica microparticle is investigated numerically using classical Langmuir and two-state models under electrokinetic flow conditions. The instantaneous particle locations are simulated along a straight microchannel using an arbitrary Lagrangian−Eulerian framework in the finite element method for the electrophoretic motion of the charged particle. Within the scope of the parametric study, the strength of the external electric field (E), particle diameter (Dp), the zeta potential of the particle (ζp), and the location of the microparticle away from the channel wall (H) are systematically varied. The results are also compared to the data of pressure-driven flow having a parabolic flow profile at the inlet whose maximum magnitude is set to the particle's electrophoretic velocity magnitude. The validation studies reveal that the code developed for the particle motion in the present simulations agrees well with the experimental results. It is observed that protein adsorption can be controlled using electrokinetic phenomena. The plug-like flow profile in electrokinetics is beneficial for a microparticle at every spatial location in the microchannel, whereas it is not valid for the pressure-driven flow. The electric field strength and the zeta potential of the particle accelerate the protein adsorption. The wall shear stress and shear rate are good indicators to predict the adsorption process for electrokinetic flow.  相似文献   
187.
In this study, graphene oxide-octadecylsilane incorporated monolithic nano-columns were developed for protein analysis by nano liquid chromatography (nano LC). The monolithic column with 100 μm id was first prepared by an in situ polymerization using ethylene dimethacrylate (EDMA), 3-chloro-2-hydroxypropylmethacrylate (HPMA-Cl), and methacryloyl graphene oxide nanoparticles (MGONPs). MGONPs were synthesized by the treatment of 3-(trimethoxysilyl)propylmethacrylate (TMSPM) and GO. Tetrahydrofuran (THF) and dodecanol were used as the porogenic solvent. The resulting column was functionalized by dimethyloctadecylch lorosilane (DODCS) for the enhancement of hydrophobicity. The functionalization greatly improved the baseline separation of hydrophobic compounds such as polyaromatic hydrocarbons (PAHs). The optimized monolith with respect to total polymerization mixture was characterized by using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) X-ray diffraction (XRD) and chromatographic analyses. The blank monoliths without functionalization exhibited poor separation while a good separation performance of MGONPs functionalized monoliths was achieved. The monolith with 100 μm id was evaluated in protein separation in nano LC using RNase A, Cytochrome C, Lysozyme, Trypsin, and Ca isozyme II as the test proteins. It was shown that protein separation mechanism was based on large π-system of GO and hydrophobicity of the monolithic structure. Theoretical plates number up to 57 600 plates were achieved. The nano-column with 50 μm id was also prepared using the same polymerization mixture under the same chemical conditions. These nano-columns were employed for protein separation by nano LC, and the dependence of both nano-column performance on the internal diameter was also discussed.  相似文献   
188.
Gas-phase electrophoresis yields size distributions of polydisperse, aerosolized analytes based on electrophoretic principles. Nanometer-sized, surface-dry, single-charged particles are separated in a high laminar sheath flow of particle-free air and an orthogonal tunable electric field. Additionally, nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA) data are particle-number based. Therefore, small particles can be detected next to larger ones without a bias, for example, native proteins next to their aggregates. Analyte transition from the liquid to the gas phase is a method inherent prerequisite. In this context, nonvolatile sample buffers influence results. In the worst case, the (bio-)nanoparticle signal is lost due to an increased baseline and unspecific clustering of nonvolatile components. We present a novel online hyphenation of liquid chromatography and gas-phase electrophoresis, coupling a size-exclusion chromatography (SEC) column to an advanced nES GEMMA. Via this novel approach, it is possible to (i) separate analyte multimers already present in liquid phase from aggregates formed during the nES process, (ii) differentiate liquid phase and spray-induced multimers, and (iii) to remove nonvolatile buffer components online before SEC–nES GEMMA analysis. Due to these findings, SEC–nES GEMMA has the high potential to help to understand aggregation processes in biological buffers adding the benefit of actual size determination for noncovalent assemblies formed in solution. As detection and characterization of protein aggregation in large-scale pharmaceutical production or sizing of noncovalently bound proteins are findings directly related to technologically and biologically relevant situations, we proposed the presented method to be a valuable addition to LC-MS approaches.  相似文献   
189.
In situ investigation of membrane proteins is a challenging task. Previously we demonstrated that nitroxide labels combined with pulsed ESR spectroscopy is a promising tool for this purpose. However, the nitroxide labels suffer from poor stability, high background labeling, and low sensitivity. Here we show that Finland (FTAM) and OX063 based labels enable labeling of the cobalamin transporter BtuB and BamA, the central component of the β-barrel assembly machinery (BAM) complex, in E coli. Compared to the methanethiosulfonate spin label (MTSL), trityl labels eliminated the background signals and enabled specific in situ labeling of the proteins with high efficiency. The OX063 labels show a long phase memory time (TM) of ≈5 μs. All the trityls enabled distance measurements between BtuB and an orthogonally labeled substrate with high selectivity and sensitivity down to a few μm concentration. Our data corroborate the BtuB and BamA conformations in the cellular environment of E. coli.  相似文献   
190.
Hydrogen peroxide and hydroxyl radical, both important members of the reactive oxygen species (ROS) family, can cause serious oxidative damages in biological systems. In order to proclaim and prevent oxidation stress, researches on the biomolecule oxidation induced by H2O2 or OH. are in crucial need. However, due to the high reactivity of ROS, traditional methods are difficult to achieve the in situ quantitative investigations on those reactions involving ROS. In this work, using scanning electrochemical microscopy technique (SECM) in a tip generation‐substrate collection mode (TG‐SC), the controllable release and the high‐efficiency collection of electrogenerated H2O2 were achieved. Compared to ex situ fluorescence method, SECM improved the collection efficiency approximately two times larger. Based on it, SECM combined with surface plasmon resonance (SPR) was employed to in situ monitor the protein oxidation (taking Cu12+? MT as a model) induced by H2O2. OH., which was generated from the interaction between H2O2 and Cu12+? MT, can attack the peptide chain and induced the unrepairable protein oxidation damage. The whole process was quantitatively characterized by SPR, and the linear relationship between SPR dip shift and the amounts of released H2O2 was successfully built. Our work proves that the combined SECM‐SPR technique can realize the in situ quantitative determinations of the biomolecule oxidation induced by ROS, which affords an avenue for further elucidation on the mechanisms of oxidation stress in organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号