全文获取类型
收费全文 | 25020篇 |
免费 | 1002篇 |
国内免费 | 4699篇 |
专业分类
化学 | 28376篇 |
晶体学 | 296篇 |
力学 | 53篇 |
综合类 | 231篇 |
数学 | 17篇 |
物理学 | 1748篇 |
出版年
2024年 | 40篇 |
2023年 | 262篇 |
2022年 | 778篇 |
2021年 | 727篇 |
2020年 | 724篇 |
2019年 | 748篇 |
2018年 | 638篇 |
2017年 | 790篇 |
2016年 | 938篇 |
2015年 | 877篇 |
2014年 | 1022篇 |
2013年 | 2248篇 |
2012年 | 1768篇 |
2011年 | 1382篇 |
2010年 | 1206篇 |
2009年 | 1436篇 |
2008年 | 1513篇 |
2007年 | 1665篇 |
2006年 | 1572篇 |
2005年 | 1464篇 |
2004年 | 1332篇 |
2003年 | 1066篇 |
2002年 | 930篇 |
2001年 | 677篇 |
2000年 | 664篇 |
1999年 | 542篇 |
1998年 | 438篇 |
1997年 | 466篇 |
1996年 | 422篇 |
1995年 | 387篇 |
1994年 | 335篇 |
1993年 | 287篇 |
1992年 | 279篇 |
1991年 | 203篇 |
1990年 | 158篇 |
1989年 | 172篇 |
1988年 | 122篇 |
1987年 | 84篇 |
1986年 | 59篇 |
1985年 | 48篇 |
1984年 | 55篇 |
1983年 | 29篇 |
1982年 | 42篇 |
1981年 | 28篇 |
1980年 | 22篇 |
1979年 | 20篇 |
1978年 | 22篇 |
1977年 | 5篇 |
1973年 | 5篇 |
1968年 | 4篇 |
排序方式: 共有10000条查询结果,搜索用时 3 毫秒
111.
Jinlong Cai Yongtong Xiong Xiang Zhu Jinyu Hu Yunping Wang Junkai Li Jianfeng Wu Qinglai Wu 《Molecules (Basel, Switzerland)》2022,27(15)
The Kleier model and Carrier-mediated theory are effective for molecularly designing pesticides with phloem mobility. However, the single Kleier model or Carrier-mediated theory cannot achieve a reliable explanation of the phloem mobility of all exogenous substances. A detailed investigation of the two models and the scope of their applications can provide a more accurate and highly efficient basis for the guidance of the design and development of phloem-mobile pesticides. In the present paper, a strategy using active ingredient-amino acid conjugates as mode compounds is developed based on Carrier-mediated theory. An N-alkylated amino acid is used to improve the pesticide’s physicochemical properties following the Kleier model, thus allowing the conjugates to fall on the predicted and more accessible transportation region of phloem. Moreover, the influence of this movement on phloem is inspected by the Kleier model and Carrier-mediated theory. To verify this strategy, a series of N-alkylated phenazine-1-carboxylic acid-glycine compounds (PCA-Gly) were designed and synthesized. The results related to the castor bean seeds (R. communis L.) indicated that all the target compounds (4a–4f) had phloem mobility. The capacity for phloem mobility shows that N-alkylated glycine containing small substituents can significantly improve PCA phloem mobility, such as 4c(i-C3H7-N) > 4a(CH3-N) ≈ 4b(C2H5-N) > 4d (t-C4H9-N) > PCA-Gly > 4e(C6H5-N) > 4f(CH2COOH-N), with an oil–water partition coefficient between 1.2~2.5. In particular, compounds 4a(CH3-N), 4b(C2H5-N), and 4c(i-C3H7-N) present better phloem mobility, with the average concentrations in phloem sap of 14.62 μΜ, 13.98 μΜ, and 17.63 μΜ in the first 5 h, which are 8 to 10 times higher than PCA-Gly (1.71 μΜ). The results reveal that the Kleier model and Carrier-mediated theory play a guiding role in the design of phloem-mobile pesticides. However, the single Kleier model or Carrier-mediated theory are not entirely accurate. Still, there is a synergism between Carrier-mediated theory and the Kleier model for promoting the phloem transport of exogenous compounds. Therefore, we suggest the introduction of endogenous plant compounds as a promoiety to improve the phloem mobility of pesticides through Carrier-mediated theory. It is necessary to consider the improvement of physicochemical properties according to the Kleier model, which can contribute to a scientific theory for developing phloem-mobile pesticides. 相似文献
112.
Yue Liu Congmin Wang Rong Guo Juexiu Li Quan Zhao Weiqiang Wang Fei Qi Haifang Liu Yang Li Huifan Zheng 《Molecules (Basel, Switzerland)》2022,27(15)
Iron–manganese silicate (IMS) was synthesized by chemical coprecipitation and used as a catalyst for ozonating acrylic acid (AA) in semicontinuous flow mode. The Fe-O-Mn bond, Fe-Si, and Mn-Si binary oxide were formed in IMS on the basis of the results of XRD, FTIR, and XPS analysis. The removal efficiency of AA was highest in the IMS catalytic ozonation processes (98.9% in 15 min) compared with ozonation alone (62.7%), iron silicate (IS) catalytic ozonation (95.6%), and manganese silicate catalytic ozonation (94.8%). Meanwhile, the removal efficiencies of total organic carbon (TOC) were also improved in the IMS catalytic ozonation processes. The IMS showed high stability and ozone utilization. Additionally, H2O2 was formed in the process of IMS catalytic ozonation. Electron paramagnetic resonance (EPR) analysis and radical scavenger experiments confirmed that hydroxyl radicals (•OH) were the dominant oxidants. Cl−, HCO3−, PO43−, Ca2+, and Mg2+ in aqueous solution could adversely affect AA degradation. In the IMS catalytic ozonation of AA, the surface hydroxyl groups and Lewis acid sites played an important role. 相似文献
113.
Umar Farooq Sara Khan Sadia Naz Tanveer A. Wani Syed Majid Bukhari Abullahi Tunde Aborode Sohail Anjum Shahzad Seema Zargar 《Molecules (Basel, Switzerland)》2022,27(15)
(1) Background: Achillea mellifolium belongs to a highly reputed family of medicinal plants, with plant extract being used as medicine in indigenous system. However, limited data is available regarding the exploitation of the medicinal potential of isolated pure compounds from this family; (2) Methods: A whole plant extract was partitioned into fractions and on the basis of biological activity, an ethyl acetate fraction was selected for isolation of pure compounds. Isolated compounds were characterized using different spectroscopic techniques. The compounds isolated from this study were tested for their medicinal potential using in-vitro enzyme assay, coupled with in-silico studies; (3) Results: Three new acrylic acid derivatives (1–3) have been isolated from the ethyl acetate fraction of Achillea mellifolium. The characterization of these compounds (1–3) was carried out using UV/Vis, FT-IR, 1D and 2D-NMR spectroscopy (1H-NMR, 13C-NMR, HMBC, NOESY) and mass spectrometry. These acrylic acid derivatives were further evaluated for their enzyme inhibition potential against urease from jack bean and α glucosidase from Saccharomyces cerevisiae, using both in-silico and in-vitro approaches. In-vitro studies showed that compound 3 has the highest inhibition against urease enzyme (IC50 =10.46 ± 0.03 μΜ), followed by compound 1 and compound 2 with percent inhibition and IC50 value of 16.87 ± 0.02 c and 13.71 ± 0.07 μΜ, respectively, compared to the standard (thiourea-IC50 = 21.5 ± 0.01 μΜ). The investigated IC50 value of compound 3 against the urease enzyme is two times lower compared to thiourea, suggesting that this compound is twice as active compared to the standard drug. On the other hand, all three compounds (1–3) revealed mild inhibition potential against α-glucosidase. In-silico molecular docking studies, in combination with MD simulations and free energy, calculations were also performed to rationalize their time evolved mode of interaction inside the active pocket. Binding energies were computed using a MMPBSA approach, and the role of individual residues to overall binding of the inhibitors inside the active pockets were also computed; (4) Conclusions: Together, these studies confirm the inhibitory potential of isolated acrylic acid derivatives against both urease and α-glucosidase enzymes; however, their inhibition potential is better for urease enzyme even when compared to the standard. 相似文献
114.
Wei Zhu Fengming Wu Jindie Hu Wenjing Wang Jifeng Zhang Guoqing Guo 《Molecules (Basel, Switzerland)》2022,27(11)
Chlorogenic acid (CGA), an important metabolite in natural plant medicines such as honeysuckle and eucommia, has been shown to have potent antinociceptive effects. Nevertheless, the mechanism by which CGA relieves chronic pain remains unclear. α-amino-3-hydroxy-5-methyl-4-isooxazolpropionic acid receptor (AMPAR) is a major ionotropic glutamate receptor that mediates rapid excitatory synaptic transmission and its glutamate ionotropic receptor AMPA type subunit 1 (GluA1) plays a key role in nociceptive transmission. In this study, we used Western blot, surface plasmon resonance (SPR) assay, and the molecular simulation technologies to investigate the mechanism of interaction between CGA and AMPAR to relieve chronic pain. Our results indicate that the protein expression level of GluA1 showed a dependent decrease as the concentration of CGA increased (0, 50, 100, and 200 μM). The SPR assay demonstrates that CGA can directly bind to GluA1 (KD = 496 μM). Furthermore, CGA forms a stable binding interaction with GluA1, which is validated by molecular dynamics (MD) simulation. The binding free energy between CGA and GluA1 is −39.803 ± 14.772 kJ/mol, where van der Waals interaction and electrostatic interaction are the major contributors to the GluA1–CGA binding, and the key residues are identified (Val-32, Glu-33, Ala-36, Glu-37, Leu-48), which play a crucial role in the binding interaction. This study first reveals the structural basis of the stable interaction between CGA and GluA1 to form a binding complex for the relief of chronic pain. The research provides the structural basis to understand the treatment of chronic pain and is valuable to the design of novel drug molecules in the future. 相似文献
115.
Steven Elder John Graham Roberson James Warren Robert Lawson Daniel Young Sean Stokes Matthew K. Ross 《Molecules (Basel, Switzerland)》2022,27(12)
In this study, kartogenin was incorporated into an electrospun blend of polycaprolactone and poly(lactic-co-glycolic acid) (1:1) to determine the feasibility of this system for sustained drug delivery. Kartogenin is a small-molecule drug that could enhance the outcome of microfracture, a cartilage restoration procedure, by selectively stimulating chondrogenic differentiation of endogenous bone marrow mesenchymal stem cells. Experimental results showed that kartogenin did not affect the electrospinnability of the polymer blend, and it had negligible effects on fiber morphology and scaffold mechanical properties. The loading efficiency of kartogenin into electrospun membranes was nearly 100%, and no evidence of chemical reaction between kartogenin and the polymers was detected by Fourier transform infrared spectroscopy. Analysis of the released drug using high-performance liquid chromatography–photodiode array detection indicated an abundance of kartogenin and only a small amount of its major hydrolysis product. Kartogenin displayed a typical biphasic release profile, with approximately 30% being released within 24 h followed by a much slower, constant rate of release up to 28 days. Although additional development is needed to tune the release kinetics and address issues common to electrospun scaffolds (e.g., high fiber density), the results of this study demonstrated that a scaffold electrospun from biodegradable synthetic polymers is a suitable kartogenin delivery vehicle. 相似文献
116.
117.
Sijia Wu Wenjuan Chen Sujuan Lu Hailing Zhang Lianghong Yin 《Molecules (Basel, Switzerland)》2022,27(15)
The shikimate pathway is a necessary pathway for the synthesis of aromatic compounds. The intermediate products of the shikimate pathway and its branching pathway have promising properties in many fields, especially in the pharmaceutical industry. Many important compounds, such as shikimic acid, quinic acid, chlorogenic acid, gallic acid, pyrogallol, catechol and so on, can be synthesized by the shikimate pathway. Among them, shikimic acid is the key raw material for the synthesis of GS4104 (Tamiflu®), an inhibitor of neuraminidase against avian influenza virus. Quininic acid is an important intermediate for synthesis of a variety of raw chemical materials and drugs. Gallic acid and catechol receive widespread attention as pharmaceutical intermediates. It is one of the hotspots to accumulate many kinds of target products by rationally modifying the shikimate pathway and its branches in recombinant strains by means of metabolic engineering. This review considers the effects of classical metabolic engineering methods, such as central carbon metabolism (CCM) pathway modification, key enzyme gene modification, blocking the downstream pathway on the shikimate pathway, as well as several expansion pathways and metabolic engineering strategies of the shikimate pathway, and expounds the synthetic biology in recent years in the application of the shikimate pathway and the future development direction. 相似文献
118.
Mohamed Ibrahim Younis Xiaofeng Ren Azalldeen Kazal Alzubaidi Khaled Fahmy Mahmoud Ammar B. Altemimi Francesco Cacciola Husnain Raza Anubhav Pratap-Singh Tarek Gamal Abedelmaksoud 《Molecules (Basel, Switzerland)》2022,27(14)
The total phenolic content (TPC) from Cassia javanica L. petals were extracted using ethanolic solvent extraction at concentrations ranging from 0 to 90% and an SCF-CO2 co-solvent at various pressures. Ultrasound-assisted extraction parameters were optimized using response surface methodology (RSM). Antioxidant and anticancer properties of total phenols were assessed. An SCF-CO2 co-solvent extract was nano-encapsulated and applied to sunflower oil without the addition of an antioxidant. The results indicated that the best treatment for retaining TPC and total flavonoids content (TFC) was SCF-CO2 co-solvent followed by the ultrasound and ethanolic extraction procedures. Additionally, the best antioxidant activity by β-carotene/linoleic acid and DPPH free radical-scavenging test systems was observed by SCF-CO2 co-solvent then ultrasound and ethanolic extraction methods. SCF-CO2 co-solvent recorded the highest inhibition % for PC3 (76.20%) and MCF7 (98.70%) and the lowest IC50 value for PC3 (145 µ/mL) and MCF7 (96 µ/mL). It was discovered that fortifying sunflower oil with SCF-CO2 co-solvent nanoparticles had a beneficial effect on free fatty acids and peroxide levels. The SCF-CO2 method was finally found to be superior and could be used in large-scale processing. 相似文献
119.
Polyoxometalate (POM) presents great potential in oxidative desulfurization (ODS) reaction. However, the high dissolubility of POM in common solvents makes it difficult to recycle. Besides, the small specific surface area of POM also limits the interaction between them and the substrate. Depositing polyoxometalates onto three-dimensional (3D) network structured materials could largely expand the application of POM. Here, the surfaces of cellulose nanofibrils (CNFs) were modified with very few (3-Aminopropyl) trimethoxysilane (APTS) to endow positive charges on the surfaces of CNFs, and then phosphotungstic acid (PTA) was loaded to obtain the aerogel A-CNF/PTA as the ODS catalyst. FT-IR indicated the successful deposition of PTA onto aminosilane modified CNF surfaces. UV-VIS further suggested the stability of PTA in the aerogels. BET and SEM results suggested the increased specific surface area and the relatively uniform 3D network structure of the prepared aerogels. TGA analysis indicated that the thermal stability of the aerogel A-CNF/PTA50% was a little higher than that of the pure CNF aerogel. Most importantly, the aerogel A-CNF/PTA50% showed good catalytic performance for ODS. Catalysis results showed that the substrate conversion rate of the aerogel A-CNF/PTA50% reached 100% within 120 min at room temperature. Even after five cycles, the substrate conversion rate of the aerogel A-CNF/PTA50% still reached 91.2% during the dynamic catalytic process. This work provides a scalable and facile way to stably deposit POM onto 3D structured materials. 相似文献
120.
Xinyi Liu Ying Tang Weiyu Ning Yihong Bao Ting Luo Jinling Wang 《Molecules (Basel, Switzerland)》2022,27(9)
This study aimed to elucidate the responses of a novel characterized Issatchenkia terricola WJL-G4 against citric acid stress by performing physiological analysis, morphology observation, and structural and membrane fatty acid composition analysis. The results showed that under citric acid stress, the cell vitality of I. terricola WJL-G4 was reduced. The cell morphology changed with the unclear, uncompleted and thinner cell wall, and degraded the cell structure. When the citric acid concentration was 20 g/L, I. terricola WJL-G4 could tolerate citric acid and maintain the cell structure by increasing the intracellular pH, superoxide dismutase activity, and contents of unsaturated fatty acids. As the citric acid concentration was ≥80 g/L, the stress has exceeded the cellular anti-stress ability, causing substantial cell damage. The cell membrane permeability, the content of membrane lipids, malondialdehyde and superoxide anion increased, but the intracellular pH and superoxide dismutase activities decreased, accompanying the increase of citric acid concentrations. The findings of this work provided a theoretical basis for the responsive mechanism of I. terricola WJL-G4 under high concentrations of citric acid, and can serve as a reference for biological acid reduction in fruit processing. 相似文献