首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   4篇
  国内免费   11篇
化学   183篇
力学   1篇
数学   4篇
物理学   20篇
  2024年   3篇
  2023年   112篇
  2022年   14篇
  2021年   10篇
  2020年   10篇
  2019年   7篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2008年   1篇
  2007年   6篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1991年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
71.
史继诚  徐洪峰  卢璐  高俊 《物理化学学报》2016,32(12):2941-2950
研究了氢溴电池的电池结构、正极氢溴酸和溴电解质浓度、负极的氢气压力、质子交换膜厚度对氢溴电池的性能和电池效率的影响。对氢溴电池结构进行改进,单电池实现了200 mA·cm-2电流密度恒流充放电,电池库伦效率100%。溴电极电化学反应受浓差极化控制,提高氢溴酸浓度,电池充电性能提高,同时,溴在氢溴酸的溶解度增大,电池放电性能也提高,氢溴酸浓度由0.5 mol·L-1提高至1 mol·L-1,电流密度200 mA·cm-2,电池的能量效率和电压效率提高27.9%。氢溴电池充电过程,降低电池负极氢出压力,有利于提高充电性能,但膜透酸严重,放电过程中最佳的氢出压力是维持氢在碳纸憎水催化层的单层吸附,充放电过程氢出压力均为40.0 kPa,电池的能量效率80.2%。膜厚度与膜电阻极化和膜透酸密切相关,充电过程,膜由50.0 μm降至15.0 μm,膜透酸严重,负极电化学活性比表面积下降,电池充电性能降低。膜厚度对放电性能的影响还与电流密度有关,电流密度较低时,膜透酸造成负极电化学比表面积下降居主导地位,50.0 μm Nafion膜放电性能更高;电流密度超过200 mA·cm-2时,膜电阻极化居主导电位,15.0 μm Nafion膜性能更高。采用20.0 μm质子交换膜,在200 mA·cm-2电流密度循环充放电五次,电池的能量效率和电压效率达到85.3%,库伦效率100%。  相似文献   
72.
We study the Na‐ion battery characteristics of SnS as a negative electrode by first‐principles calculations. From energy analyses, we clarify the discharge reaction process of the Na/SnS half‐cell system. We show a phase diagram of Na?Sn?S ternary systems by constructing convex‐hull curves, and show a possible reaction route considering intermediate products in discharge reactions. Voltage‐capacity curves are calculated based on the Na?SnS reaction path that is obtained from the ternary phase diagram. It is found that the conversion reactions and subsequently the alloying reactions proceed in the SnS electrode, contributing to its high capacity compared with the metallic Sn electrode, in which only the alloying reactions progresses stepwise. To verify the calculated reaction process, x‐ray absorption spectra (XAS) are calculated and compared with experimental XAS at S K‐edge, showing meaningful XAS changes associated with Na2S and SnS in discharged and charged states, respectively.  相似文献   
73.
Polyarlylamines with discrete redox active groups in the polymer backbone represent a promising class of cathode materials for electrical energy storage applications. In this area, our group recently reported a set of phenothiazine-based polymers that exhibit both high capacities and power densities. In order to rationally improve the properties of these electrode materials, a fundamental understanding of their electrochemical properties is indispensable. Herein, we probe the electrochemical behavior of our phenothiazine-based systems by synthesizing small molecule analogs using C–N cross-coupling. Additionally, electropolymerization of a class of these small molecule phenothiazines yields thin films that were then characterized with an electrochemical quartz crystal microbalance. Analysis of these materials provides insights into the number of electrons accessed from each repeat unit in our polymer backbone during electrochemical cycling, as well as counter ion transport dynamics.  相似文献   
74.
通过5种申报为“铅矿”的进口含铅物料的分析,发现铅矿伪报的现象时有发生,这些物料从外观上、铅含量上很难确认其真实属性,实验通过分析样品的理化特征,比对研究和文献查找的方法,分析进口含铅物料来源,进而获得属性判定的方法。其方法主要包括以下5个步骤:(1 )观察样品的外观性状,包括形状、粒度、颜色、手感、气味、磁性等特征;(2)测试样品的理化性质,包括元素组成、物相组成、微观形貌以及酸碱性等其他可能必要的信息;(3)对比研究所属申报品名的样品特征,即对铅矿样品进行比对研究;(4) 比对查证文献资料等,根据获得的样品的相关检测数据和铅矿信息,查阅相关的文献资料,对样品可能产生的来源进行查证分析; (5)确立样品的来源,从而确认样品的属性。  相似文献   
75.
The polysulfide (PS) dissolution and low conductivity of lithium sulfides (Li2S) are generally considered the main reasons for limiting the reversible capacity of the lithium-sulfur (Li-S) system. However, as the inevitable intermediate between PSs and Li2S, lithium disulfide (Li2S2) evolutions are always overlooked. Herein, Li2S2 evolutions are monitored from the operando measurements on the pouch cell level. Results indicate that Li2S2 undergoes slow electrochemical reduction and chemical disproportionation simultaneously during the discharging process, leading to further PS dissolution and Li2S generation without capacity contribution. Compared with the fully oxidized Li2S, Li2S2 still residues at the end of the charging state. Therefore, instead of the considered Li2S and PSs, slow electrochemical conversions and side chemical reactions of Li2S2 are the determining factors in limiting the sulfur utilization, corresponding to the poor reversible capacity of Li-S batteries.  相似文献   
76.
Lithium-oxygen batteries (LOBs) are well known for their high energy density. However, their reversibility and rate performance are challenged due to the sluggish oxygen reduction/evolution reactions (ORR/OER) kinetics, serious side reactions and uncontrollable Li dendrite growth. The electrolyte plays a key role in transport of Li+ and reactive oxygen species in LOBs. Here, we tailored a dilute electrolyte by screening suitable crown ether additives to promote lithium salt dissociation and Li+ solvation through electrostatic interaction. The electrolyte containing 100 mM 18-crown-6 ether (100-18C6) exhibits enhanced electrochemical stability and triggers a solution-mediated Li2O2 growth pathway in LOBs, showing high discharge capacity of 10 828.8 mAh gcarbon−1. Moreover, optimized electrode/electrolyte interfaces promote ORR/OER kinetics on cathode and achieve dendrite-free Li anode, which enhances the cycle life. This work casts new lights on the design of low-cost dilute electrolytes for high performance LOBs.  相似文献   
77.
Although great progress has been made in new electrolytes for lithium metal batteries (LMBs), the intrinsic relationship between electrolyte composition and cell performance remains unclear due to the lack of valid quantization method. Here, we proposed the concept of negative center of electrostatic potential (NCESP) and Mayer bond order (MBO) to describe solvent capability, which highly relate to solvation structure and oxidation potential, respectively. Based on established principles, the selected electrolyte with 1.7 M LiFSI in methoxytrimethylsilane (MOTMS)/ (trifluoromethyl)trimethylsilane (TFMTMS) shows unique hyperconjugation nature to stabilize both Li anode and high-voltage cathode. The 4.6 V 30 μm Li||4.5 mAh cm−2 lithium cobalt oxide (LCO) (low N/P ratio of 1.3) cell with our electrolyte shows stable cycling with 91 % capacity retention over 200 cycles. The bottom-up design concept of electrolyte opens up a general strategy for advancing high-voltage LMBs.  相似文献   
78.
Fast and continuous ion insertion is blocked in the common electrodes operating with widely accepted single-ion storage mechanism, primarily due to Coulomb repulsion between the same ions. It results in an irreconcilable conflict between capacity and rate performance. Herein, we designed a porous organic framework with novel multiple-ion co-storage modes, including PF6/Li+, OTF/Mg2+, and OTF/Zn2+ co-storage. The Coulomb interactions between cationic and anionic carriers in the framework can significantly promote electrode kinetics, by rejuvenating fast ion carrier migration toward framework interior. Consequently, the framework via PF6/Li+ co-storage mode shows a high energy density of 878 Wh kg−1 cycled more than 20 000 cycles, with an excellent power density of 28 kW kg−1 that is already comparable to commercial supercapacitors. The both greatly improved energy and power densities via the co-storage mode may pave a way for exploring new electrodes that are not available from common single-ion electrodes.  相似文献   
79.
Solar-to-electrochemical energy storage in solar batteries is an important solar utilization technology comparable to solar-to-electricity (solar cells) and solar-to-fuel (photocatalytic cells) conversion. Unlike the indirect approach of integrated solar flow batteries combining photoelectrodes with redox-electrodes, coupled solar batteries enable direct solar energy storage, but are hampered by low efficiency due to rapid charge recombination of materials and misaligned energy levels between electrodes. Herein, we propose a design for a coupled solar battery that intercouples two photo-coupled ion transfer (PCIT) reactions through electron-ion transfer upon co-photo-pumping of photoelectrochemical storage cathode and anode. We used a representative covalent organic framework (COF) to achieve efficient charge separation and directional charge transfer between two band-matched photoelectrochemical storage electrodes, with a photovoltage sufficient for COF dual-redox reactions. By pumping these electrodes, the coupled solar battery stores solar energy via two synergistic PCIT reactions of electron-proton-relayed COF oxidation and reduction, and the stored solar energy is released as electrochemical energy during COF regeneration in discharge while interlocking the loops. A breakthrough in efficiency (6.9 %) was achieved, adaptive to a large-area (56 cm2) tandem device. The presented photo-intercoupled electron-ion transfer (PIEIT) mechanism provides expandable paths toward practical solar-to-electrochemical energy storage.  相似文献   
80.
Aluminum-ion batteries (AIBs) are a promising candidate for large-scale energy storage due to the abundant reserves, low cost, good safety, and high theoretical capacity of Al. However, AIBs with inorganic positive electrodes still suffer from sluggish kinetics and structural collapse upon cycling. Herein, we propose a novel p-type poly(vinylbenzyl-N-phenoxazine) (PVBPX) positive electrode for AIBs. The dual active sites enable PVBPX to deliver a high capacity of 133 mAh g−1 at 0.2 A g−1. More impressively, the expanded π-conjugated construction, insolubility, and anionic redox chemistry without bond rearrangement of PVBPX for AIBs contribute to an amazing ultra-long lifetime of 50000 cycles. The charge storage mechanism is that the AlCl4 ions can reversibly coordinate/dissociate with the N and O sites in PVBPX sequentially, which is evidenced by both experimental and theoretical results. These findings establish a foundation to advance organic AIBs for large-scale energy storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号