全文获取类型
收费全文 | 4855篇 |
免费 | 268篇 |
国内免费 | 1229篇 |
专业分类
化学 | 5540篇 |
晶体学 | 16篇 |
力学 | 153篇 |
综合类 | 45篇 |
数学 | 65篇 |
物理学 | 533篇 |
出版年
2024年 | 21篇 |
2023年 | 59篇 |
2022年 | 164篇 |
2021年 | 192篇 |
2020年 | 213篇 |
2019年 | 147篇 |
2018年 | 113篇 |
2017年 | 156篇 |
2016年 | 192篇 |
2015年 | 169篇 |
2014年 | 180篇 |
2013年 | 319篇 |
2012年 | 343篇 |
2011年 | 228篇 |
2010年 | 252篇 |
2009年 | 339篇 |
2008年 | 459篇 |
2007年 | 313篇 |
2006年 | 337篇 |
2005年 | 293篇 |
2004年 | 253篇 |
2003年 | 212篇 |
2002年 | 151篇 |
2001年 | 146篇 |
2000年 | 148篇 |
1999年 | 118篇 |
1998年 | 112篇 |
1997年 | 108篇 |
1996年 | 112篇 |
1995年 | 95篇 |
1994年 | 89篇 |
1993年 | 89篇 |
1992年 | 56篇 |
1991年 | 39篇 |
1990年 | 28篇 |
1989年 | 33篇 |
1988年 | 22篇 |
1987年 | 17篇 |
1986年 | 10篇 |
1985年 | 5篇 |
1984年 | 5篇 |
1983年 | 1篇 |
1982年 | 5篇 |
1981年 | 4篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1976年 | 2篇 |
1971年 | 1篇 |
排序方式: 共有6352条查询结果,搜索用时 15 毫秒
21.
E. Luboch 《Journal of inclusion phenomena and macrocyclic chemistry》1996,26(4):253-268
A series of lipophilic derivatives of benzo-12-crown-4 and naphtho-12-crown-4 has been synthesized. The behavior of the prepared derivatives in membrane ion-selective electrodes has been studied. Selectivity changes dependent on the position and number of substituents have been observed. 相似文献
22.
Jamal Afzal Yaomei Fu Tian-Xiang Luan Zhongmin Su Pei-Zhou Li 《Molecules (Basel, Switzerland)》2022,27(13)
Developing a low-cost and effective proton-conductive electrolyte to meet the requirements of the large-scale manufacturing of proton exchange membrane (PEM) fuel cells is of great significance in progressing towards the upcoming “hydrogen economy” society. Herein, utilizing the one-pot acylation polymeric combination of acyl chloride and amine precursors, a polyamide with in-built -SO3H moieties (PA-PhSO3H) was facilely synthesized. Characterization shows that it possesses a porous feature and a high stability at the practical operating conditions of PEM fuel cells. Investigations of electrochemical impedance spectroscopy (EIS) measurements revealed that the fabricated PA-PhSO3H displays a proton conductivity of up to 8.85 × 10−2 S·cm−1 at 353 K under 98% relative humidity (RH), which is more than two orders of magnitude higher than that of its -SO3H-free analogue, PA-Ph (6.30 × 10−4 S·cm−1), under the same conditions. Therefore, matrix-mixed membranes were fabricated by mixing with polyacrylonitrile (PAN) in different ratios, and the EIS analyses revealed that its proton conductivity can reach up to 4.90 × 10−2 S·cm−1 at 353 K and a 98% relative humidity (RH) when the weight ratio of PA-PhSO3H:PAN is 3:1 (labeled as PA-PhSO3H-PAN (3:1)), the value of which is even comparable with those of commercial-available electrolytes being used in PEM fuel cells. Additionally, continuous tests showed that PA-PhSO3H-PAN (3:1) possesses a long-life reusability. This work demonstrates, using the simple acylation reaction with the sulfonated module as precursor, that low-cost and highly effective proton-conductive electrolytes for PEM fuel cells can be facilely achieved. 相似文献
23.
Enrico DRIOLI Enrica FONTANANOVA Marcella BONCHIO Mauro CARRARO Martino GARDAN Gianfranco SCORRANO 《催化学报》2008,29(11):1152-1158
The design of new heterogeneous photooxygenation systems able to employ visible light, oxygen, mild temperatures, and solvent with a low environmental impact has been investigated. In particular, the heterogenization of decatungstate (W10O4-32), a polyoxometalate with photocatalytic activity in oxidation reactions, has been carried out in polymeric membranes of polyvinylidenefluoride. The polymeric catalytic membranes prepared by phase inversion technique have been successfully applied in the aerobic mineralization of phenol in water, which was used as an example of organic pollutant. In order to evaluate the effect of the polymeric environment on the overall catalyst behavior, we have also heterogenized the decatungstate (opportunely functionalized) in perfluorinated membrane made of Hyflon. The photocatalytic composite membranes are characterized by different and tuneable properties depending on the nature of the polymeric micro-environment, in which the catalyst is confined. Moreover, the selective separation function of the membrane results in enhanced performance in comparison with homogeneous reactions. 相似文献
24.
孔梯度陶瓷纤维复合膜管的制备及特性 总被引:1,自引:0,他引:1
陶瓷过滤管具有孔隙率高、耐腐蚀、耐高温、机械强度高、便于清洗、使用寿命长等优点,是高温烟尘处理用的高效过滤元件.本文研制了一种具有梯度孔结构堇青石陶瓷纤维复合膜过滤元件,该过滤元件是由多孔支撑体、过渡层和分离膜层组成.其中支撑体、过渡层和分离层的气孔率分别为35~40;、50~60;和60~70;.文中主要分析了孔梯度陶瓷纤维复合膜管的材料结构和抗热震性能,同时对复合膜管进行含尘气体过滤的冷态模拟试验.对于烟气中粒径大于或等于0.1μm的颗粒,复合膜管的截留率达到99.8;以上. 相似文献
25.
A CA19-9 electrochemical immunosensor was constructed using a hybrid self-assembled membrane modified with a gold electrode and applied to detect real samples. Hybrid self-assembled membranes were selected for electrode modification and used to detect antigens. First, the pretreated working electrodes were placed in a 3-mercaptopropionic acid (MPA)/β-mercaptoethanol (ME) mixture for 24 h for self-assembly. The electrodes were then placed in an EDC/NHS mixture for 1 h. Layer modification was performed by stepwise dropwise addition of CA19-9 antibody, BSA, and antigen. Differential pulse voltammetry was used to characterize this immunosensor preparation process. The assembled electrochemical immunosensor enables linear detection in the concentration range of 0.05–500 U/mL of CA19-9, and the detection limit was calculated as 0.01 U/mL. The results of the specificity measurement test showed that the signal change of the interfering substance was much lower than the response value of the detected antigen, indicating that the sensor has good specificity and strong anti-interference ability. The repeatability test results showed that the relative standard deviations were less than 5%, showing good accuracy and precision. The CA19-9 electrochemical immunosensor was used for the actual sample detection, and the experimental results of the standard serum addition method showed that the RSD values of the test concentrations were all less than 10%. The recoveries were 102.4–115.0%, indicating that the assay has high precision, good accuracy, and high potential application value. 相似文献
26.
Xinyi Liu Ying Tang Weiyu Ning Yihong Bao Ting Luo Jinling Wang 《Molecules (Basel, Switzerland)》2022,27(9)
This study aimed to elucidate the responses of a novel characterized Issatchenkia terricola WJL-G4 against citric acid stress by performing physiological analysis, morphology observation, and structural and membrane fatty acid composition analysis. The results showed that under citric acid stress, the cell vitality of I. terricola WJL-G4 was reduced. The cell morphology changed with the unclear, uncompleted and thinner cell wall, and degraded the cell structure. When the citric acid concentration was 20 g/L, I. terricola WJL-G4 could tolerate citric acid and maintain the cell structure by increasing the intracellular pH, superoxide dismutase activity, and contents of unsaturated fatty acids. As the citric acid concentration was ≥80 g/L, the stress has exceeded the cellular anti-stress ability, causing substantial cell damage. The cell membrane permeability, the content of membrane lipids, malondialdehyde and superoxide anion increased, but the intracellular pH and superoxide dismutase activities decreased, accompanying the increase of citric acid concentrations. The findings of this work provided a theoretical basis for the responsive mechanism of I. terricola WJL-G4 under high concentrations of citric acid, and can serve as a reference for biological acid reduction in fruit processing. 相似文献
27.
Sarra Akermi Slim Smaoui Khaoula Elhadef Mariam Fourati Nacim Louhichi Moufida Chaari Ahlem Chakchouk Mtibaa Aissette Baanannou Saber Masmoudi Lotfi Mellouli 《Molecules (Basel, Switzerland)》2022,27(9)
Nowadays, increasing interest has recently been given to the exploration of new food preservatives to avoid foodborne outbreaks or food spoilage. Likewise, new compounds that substitute the commonly used synthetic food preservatives are required to restrain the rising problem of microbial resistance. Accordingly, the present study was conducted to examine the chemical composition and the mechanism(s) of action of the Cupressus sempervirens essential oil (CSEO) against Salmonella enterica Typhimuriumand Staphyloccocus aureus. The gas chromatography analysis revealed α-pinene (38.47%) and δ-3-carene (25.14%) are the major components of the CSEO. By using computational methods, such as quantitative structure–activity relationship (QSAR), we revealed that many CSEO components had no toxic effects. Moreover, findings indicated that α-pinene, δ-3-carene and borneol, a minor compound of CSEO, could inhibit the AcrB-TolC and MepR efflux pump activity of S. enterica Typhimurium and S. aureus, respectively. In addition, our molecular docking predictions indicated the high affinity of these three compounds with active sites of bacterial DNA and RNA polymerases, pointing to plausible impairments of the pathogenic bacteria cell replication processes. As well, the safety profile was developed through the zebrafish model. The in vivo toxicological evaluation of (CSEO) exhibited a concentration-dependent manner, with a lethal concentration (LC50) equal to 6.6 µg/mL. 相似文献
28.
Nathaniel T. Rebeck Yifan Li Daniel M. Knauss 《Journal of polymer science. Part A, Polymer chemistry》2013,51(24):1770-1778
Poly(phenylene oxide) block and random copolymers are synthesized by oxidative polymerization of 2,6-dimethylphenol and 2,6-diphenylphenol for potential alkaline exchange membrane application. The copolymers are functionalized on the methyl substituted repeat units through a two-step process to produce pendent quaternary ammonium cationic groups. The amount of quaternary ammonium cations and the ion exchange capacity are quantified through titration measurements. Ionic conductivity of the copolymer membranes is measured by electrochemical impedance spectroscopy. Block copolymers show increased bromide conductivity at higher ion exchange capacities compared with the random copolymer analogs. The bromide conductivity for a block copolymer film with an ion exchange capacity of 1.27 mequiv/g reaches 26 mS/cm at 90 °C and 95% relative humidity. The hydroxide conductivity for the same film was measured to be 84 mS/cm at 80 °C and 95% relative humidity. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1770–1778, 2013 相似文献
29.
Membrane technology is becoming more important for CO 2 separation from natural gas in the new era due to its process simplicity,relative ease of operation and control,compact,and easy to scale up as compared with conventional processes.Conventional processes such as absorption and adsorption for CO 2 separation from natural gas are generally more energy demanding and costly for both operation and maintenance.Polymeric membranes are the current commercial membranes used for CO 2 separation from natural gas.However,polymeric membranes possess drawbacks such as low permeability and selectivity,plasticization at high temperatures,as well as insufficient thermal and chemical stability.The shortcomings of commercial polymeric membranes have motivated researchers to opt for other alternatives,especially inorganic membranes due to their higher thermal stability,good chemical resistance to solvents,high mechanical strength and long lifetime.Surface modifications can be utilized in inorganic membranes to further enhance the selectivity,permeability or catalytic activities of the membrane.This paper is to provide a comprehensive review on gas separation,comparing membrane technology with other conventional methods of recovering CO 2 from natural gas,challenges of current commercial polymeric membranes and inorganic membranes for CO 2 removal and membrane surface modification for improved selectivity. 相似文献
30.
《Journal of Coordination Chemistry》2012,65(6):952-964
N,N′-bis(salicylidene)thiosemicarbazide Schiff base has been synthesized by the reaction of thiosemicarbazide with salicylaldehyde and then reacted with formaldehyde to generate phenolic groups, resulting in the formation of Schiff-base monomeric ligand. It was further incorporated with transition metals, Mn+2, Co+2, Ni+2, Cu+2, and Zn+2, to form Schiff-base metal complex, which was then polymerized with toluene 2,4-diisocyanate to form metal-chelated polyurethanes. Monomeric ligand, its metal complexes, and its metal polychelates were characterized and compared by elemental analysis, FT-IR, 1H NMR, thermal, and biocidal activities to evaluate the enhancement in physical and chemical properties on coordination with metal and on polymerization. SEM images of ligand and polymer metal complexes showed changes in surface morphology, while electronic spectra of polymer metal complexes were used to predict the geometry. Antimicrobial activities were determined by using agar-diffusion method with Staphylococcus aureus, Escherichia coli, Bacillus subtilis (bacteria), Aspergillus niger, Candida albicans, and Aspergillus flavus (yeast). The polymeric ligand had varied antibacterial and antifungal activities, enhanced after chelation and polymerization. Comparative results show that coordination of metal to the ligand enhances its physical and chemical properties which were meliorated on polymerization. 相似文献