首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1212篇
  免费   98篇
  国内免费   110篇
化学   1195篇
晶体学   8篇
力学   49篇
数学   4篇
物理学   164篇
  2024年   2篇
  2023年   14篇
  2022年   20篇
  2021年   34篇
  2020年   43篇
  2019年   29篇
  2018年   17篇
  2017年   36篇
  2016年   45篇
  2015年   51篇
  2014年   55篇
  2013年   76篇
  2012年   78篇
  2011年   85篇
  2010年   70篇
  2009年   80篇
  2008年   87篇
  2007年   106篇
  2006年   64篇
  2005年   54篇
  2004年   47篇
  2003年   45篇
  2002年   37篇
  2001年   32篇
  2000年   21篇
  1999年   29篇
  1998年   15篇
  1997年   15篇
  1996年   13篇
  1995年   25篇
  1994年   22篇
  1993年   18篇
  1992年   12篇
  1991年   7篇
  1990年   6篇
  1989年   6篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有1420条查询结果,搜索用时 15 毫秒
81.
82.
The aggregation behavior of mixtures of the alkaline amino acid L ‐Arginine (L ‐Arg) and bis(2‐ethylhexyl)phosphoric acid (DEHPA) in water was studied in detail. At a fixed L ‐Arg concentration, a phase sequence of micellar phase (L1 phase), vesicle phase (Lαv phase), planar lamellar phase (Lαl phase), and sponge phase (L3 phase) was obtained with increasing DEHPA concentration due to changes in the packing parameter. The phase transition of the lamellar structures was determined by freeze‐fracture TEM and 2H NMR spectroscopy. Rheological measurements reflected the phase transition through significant variations of both the elastic modulus and the viscous modulus. Porous CeO2 materials were produced by utilizing the L3 phase as template, and the porous CeO2 exhibited excellent catalytic oxidation activity toward CO due to its high surface area, which provides more active sites for CO conversion.  相似文献   
83.
Taking tetraoxacalix[2]arene[2]triazine as a functionalization platform, a series of new amphiphilic molecules were synthesized in 18 to 53 % yields by using a fragment coupling protocol. These amphiphilic molecules self‐assembled into stable vesicles in a mixture of THF and water, with the surface of the vesicles engineered by electron‐deficient cavities. Various anions are able to selectively influence the size of self‐assembled vesicles, following the order of F?<ClO4?<SCN?<BF4?<Br?<Cl?<NO3?, as revealed by DLS measurements. Such a sequence was independent with the hydration cost and in agreement with the binding strength of anions with tetraoxacalix[2]arene[2]triazine host molecule, indicating that the anion–π interaction most probably competed over other possible weak interactions and accounted for this interesting selectivity. In addition, the chloride permeation process across the membrane of the vesicles was also preliminarily studied by means of fluorescent experiments. This study, in addition to providing the potentiality of heteracalixaromatics as new models to construct functional vesicles, opens a new avenue to study the anion–π interactions in aqueous and also potentially in living systems.  相似文献   
84.
Functionalized vesicles for photocatalytic hydrogen production in water have been prepared by co‐embedding of amphiphilic photosensitizers and a hydrogen‐evolving catalyst in phospholipid membranes. The self‐assembly allows a simple two‐dimensional arrangement of the multicomponent system with close spatial proximity, which gave turnover numbers up to 165 for the incorporated amphiphilic cobaloxime water reduction catalyst 3 b under optimized conditions in purely aqueous solution. Superior photocatalytic activity in fluid membranes indicates that mobility and dynamic reorganization of catalytic subunits in the membrane promote the visible‐light‐driven hydrogen production. The functionalized membranes represent nanostructured assemblies for hydrogen production in aqueous solution mimicking natural photosynthesis.  相似文献   
85.
Three new artificial transmembrane channel molecules have been designed and synthesized by attaching positively charged Arg‐incorporated tripeptide chains to pillar[5]arene. Fluorescent and patch‐clamp experiments revealed that voltage can drive the molecules to insert into and leave from a lipid bilayer and thus switch on and off the transport of K+ ions. One of the molecules was found to display antimicrobial activity toward Bacillus subtilis with half maximal inhibitory concentration (IC50) of 10 μM which is comparable to that of natural channel‐forming peptide alamethicin.  相似文献   
86.
Surface‐addressable nanostructures of linearly π‐conjugated molecules play a crucial role in the emerging field of nanoelectronics. Herein, by using DNA as the hydrophilic segment, we demonstrate a solid‐phase “click” chemistry approach for the synthesis of a series of DNA–chromophore hybrid amphiphiles and report their reversible self‐assembly into surface‐engineered vesicles with enhanced emission. DNA‐directed surface addressability of the vesicles was demonstrated through the integration of gold nanoparticles onto the surface of the vesicles by sequence‐specific DNA hybridization. This system could be converted to a supramolecular light‐harvesting antenna by integrating suitable FRET acceptors onto the surface of the nanostructures. The general nature of the synthesis, surface addressability, and biocompatibility of the resulting nanostructures offer great promises for nanoelectronics, energy, and biomedical applications.  相似文献   
87.
A novel ferrocenium capped amphiphilic pillar[5]arene (FCAP) was synthesized and self‐assembled to cationic vesicles in aqueous solution. The cationic vesicles, displaying low cytotoxicity and significant redox‐responsive behavior due to the redox equilibrium between ferrocenium cations and ferrocenyl groups, allow building an ideal glutathione (GSH)‐responsive drug/siRNA co‐delivery system for rapid drug release and gene transfection in cancer cells in which higher GSH concentration exists. This is the first report of redox‐responsive vesicles assembled from pillararenes for drug/siRNA co‐delivery; besides enhancing the bioavailability of drugs for cancer cells and reducing the adverse side effects for normal cells, these systems can also overcome the drug resistance of cancer cells. This work presents a good example of rational design for an effective stimuli‐responsive drug/siRNA co‐delivery system.  相似文献   
88.
Large (200 nm) poly(ethylene oxide)‐b‐poly(butadiene) polymer vesicles fuse into giant (>1 μm) vesicles with mild agitation in dilute aqueous NaCl solutions. This unusual effect is attributed to the salt‐induced contraction of the poly(ethylene oxide) corona, reducing steric resistance between vesicles and, with agitation, increasing the probability of contact between the hydrophobic cores of adjacent membranes. In addition, NaCl and agitation facilitated the creation of giant hybrid vesicles from much smaller homogeneous polymersomes and liposomes. Whereas lipid vesicles do not readily fuse with each other under the same circumstances, they did fuse with polymersomes to produce hybrid polymer/lipid vesicles.  相似文献   
89.
The synthesis of an innovative self‐propelled Janus nanomotor with a diameter of about 75 nm that can be used as a drug carrier is described. The Janus nanomotor is based on mesoporous silica nanoparticles (MSNs) with chromium/platinum metallic caps and propelled by decomposing hydrogen peroxide to generate oxygen as a driving force with speeds up to 20.2 μm s?1 (about 267 body lengths per second). The diffusion coefficient (D) of nanomotors with different H2O2 concentrations is calculated by tracking the movement of individual particles recorded by means of a self‐assembled fluorescence microscope and is significantly larger than free Brownian motion. The traction of a single Janus MSN nanomotor is estimated to be about 13.47×10?15 N. Finally, intracellular localization and drug release in vitro shows that the amount of Janus MSN nanomotors entering the cells is more than MSNs with same culture time and particle concentrations, meanwhile anticancer drug doxorubicin hydrochloride loaded in Janus MSNs can be slowly released by biodegradation of lipid bilayers in cells.  相似文献   
90.
丁小斌 《高分子科学》2014,32(7):817-822
Copolymers with super segregated structure of hydrophilic methoxy poly(ethylene glycol) (mPEG) and fluorophilic poly(1H,1H,2H,2H-perfluorodecyl acrylate) (PFA) were prepared. And just because of this super segregated structure which was resulted from the extremely strong incompatibility between the two blocks, several interesting self- assembly behaviors of the copolymers were displayed and studied under different conditions. Transmission electron microscope (TEM) showed that with the increase of PFA in the polymerization system, the incompatibility in this super segregated structure became stronger, and the self-assembly behavior changed from ball-like or rod-like to vesicles, and finally collapsed to sheet-like. The self-assembly behavior changed likewise when the initial concentration increased. And the interesting formation of these barrel-like and spindle-like vesicles was finally studied with different cooling speeds. It's finally found that with this super segregation structure, these new self-assembly morphology might be formed due to the extremely strong incompatibility between mPEG and PFA segments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号