首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2342篇
  免费   233篇
  国内免费   187篇
化学   2526篇
晶体学   9篇
力学   73篇
综合类   2篇
数学   12篇
物理学   140篇
  2024年   1篇
  2023年   20篇
  2022年   40篇
  2021年   53篇
  2020年   108篇
  2019年   58篇
  2018年   55篇
  2017年   54篇
  2016年   103篇
  2015年   105篇
  2014年   96篇
  2013年   128篇
  2012年   122篇
  2011年   142篇
  2010年   121篇
  2009年   160篇
  2008年   188篇
  2007年   149篇
  2006年   142篇
  2005年   134篇
  2004年   119篇
  2003年   92篇
  2002年   69篇
  2001年   56篇
  2000年   36篇
  1999年   53篇
  1998年   42篇
  1997年   38篇
  1996年   52篇
  1995年   40篇
  1994年   35篇
  1993年   40篇
  1992年   28篇
  1991年   14篇
  1990年   11篇
  1989年   14篇
  1988年   10篇
  1987年   16篇
  1986年   7篇
  1985年   2篇
  1984年   3篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有2762条查询结果,搜索用时 843 毫秒
141.
A series of sterically‐encumbered, sulfonated, poly(arylene ether) copolymers were synthesized and their proton conductivity examined. The series was prepared by copolymerizing a novel monomer, 2″,3″,5″,6″‐tetraphenyl‐[1,1′:4',1″:4″,1″':4″',1″″‐quinquephenyl]‐4,4″″‐diol, with 4,4'‐difluorobenzophenone and bisphenol A. Subsequent sulfonation and solution casting provided membranes possessing ion exchange capacities of 1.9 to 2.7 mmol/g and excellent mechanical properties (Young's modulus, 0.2–1.2 GPa; tensile strength, 35–70 MPa; elongation at break, 62–231%). Water uptake ranged from 34 to 98 wt% at 80 °C/100% RH. Proton conductivities ranged between 0.24 to 16 mS/cm at 80 °C/60% RH, and 3 to 167 mS/cm at 80 °C/95% RH. TEM analysis of the polymers, in the dehydrated state, revealed isolated spherical aggregates of ions, which presumably coalesce when hydrated to provide highly conductive pathways. The strategy of using highly‐encumbered polymer frameworks for the design of mechanically‐robust and dimensionally‐stable proton conducting membranes is demonstrated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2579‐2587  相似文献   
142.
We described the design and synthesis of a modified poly(aryl ether ketone) bearing phenolphthalein and allyl groups (P‐PAEK) via nucleophilic polycondensation. A new kind of composite separator, crosslinked P‐PAEK/polyvinylidene fluoride (c‐P‐PAEK/PVDF) membrane was successfully prepared using phase separation, phase inversion method, and UV crosslinking technique. As a separator of lithium‐ion battery, c‐P‐PAEK/PVDF membrane demonstrates high porosity and uniform distribution of pores with interconnected pathways. Low thermal shrinkage, distinct shut‐down effect, high liquid electrolyte uptake capacity, and exciting liquid electrolyte wettability of the prepared c‐P‐PAEK/PVDF membrane have been revealed through comprehensive study. Moreover, the c‐P‐PAEK/PVDF membrane was applied to assemble a conventional Li/LiFePO4 coin cell, which exhibited hopeful cell performance. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2714–2721  相似文献   
143.
144.
In the perspective of in-field stripping analysis of heavy metals, the use and disposal of toxic mercury solutions (necessary to plate a mercury film on a carbon electrode surface) presents a problem. The aim of this work was the development of mercury coated screen-printed electrodes previously prepared in the lab and ready to use in-field. Thus some commercially available polymers like Nafion®, Eastman Kodak AQ29®, and Methocel® were investigated as mercury entrapping systems for electrochemical stripping analysis of heavy metals. Screen-printed disposable cells with a silver pseudo-reference electrode, a graphite counter electrode, and a graphite working electrode were used. To modify the sensor, the polymer solution was cast onto the carbon working electrode surface. Detection limits of 0.8 and 1 μg/L were obtained for lead and cadmium respectively. Since Methocel® based electrodes showed the best performance, they were used for the analysis of real samples. The results were compared with those obtained using a classical thin mercury film electrode and ICP spectroscopy.

All the experiments reported here were performed in un-deareated solutions as required for in-field analysis.  相似文献   
145.
We report the structure and thermal properties of blends comprising poly(vinylidene fluoride) (PVDF) and a random fluorinated copolymer (FCP) of poly(methyl methacrylate)‐random‐1H,1H,2H,2H‐perfluorodecyl methacrylate, promising membrane materials for oil–water separation. The roles of processing method and copolymer content on structure and properties were studied for fibrous membranes and films with varying compositions. Bead‐free, nonwoven fibrous membranes were obtained by electrospinning. Fiber diameters ranged from 0.4 to 1.9 μm, and thinner fibers were obtained for PVDF content >80%. As copolymer content increased, degree of crystallinity and onset of degradation for each blend decreased. Processing conditions have a greater impact on the crystallographic phase of PVDF than copolymer content. Fibers have polar beta phase; solution‐cast films contain gamma and beta phase; and melt crystallized films form alpha phase. Kwei's model was used to model the glass transition temperatures of the blends. Addition of FCP increases hydrophobicity of the electrospun membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 312–322  相似文献   
146.
Macroencapsulation of islets of Langerhans is a promising strategy for transplantation of insulin‐producing cells in the absence of immunosuppression to treat type 1 diabetes. Hollow fiber membranes are of interest there because they offer a large surface‐to‐volume ratio and can potentially be retrieved or refilled. However, current available fibers have limitations in exchange of nutrients, oxygen, and delivery of insulin potentially impacting graft survival. Here, multibore hollow fibers for islets encapsulation are designed and tested. They consist of seven bores and are prepared using nondegradable polymers with high mechanical stability and low cell adhesion properties. Human islets encapsulated there have a glucose induced insulin response (GIIS) similar to nonencapsulated islets. During 7 d of cell culture in vitro, the GIIS increases with graded doses of islets demonstrating the suitability of the microenvironment for islet survival. Moreover, first implantation studies in mice demonstrate device material biocompatibility with minimal tissue responses. Besides, formation of new blood vessels close to the implanted device is observed, an important requirement for maintaining islet viability and fast exchange of glucose and insulin. The results indicate that the developed fibers have high islet bearing capacity and can potentially be applied for a clinically applicable bioartificial pancreas.  相似文献   
147.
The anion exchange membranes (AEMs) with both high ionic conductivity and alkali stability are always the research focus of the AEM fuel cells. Here, a novel nonplanar polymer for AEMs manufacture, mPBI‐TP‐x‐R, with excellent hydroxide stability and satisfactory processability is reported for the first time. The serial mPBI‐TP‐x resins with steric hindrance were prepared by copolymerization among 3,3′,4,4′‐tetraaminobiphenyl, isophthalic acid and tetraphenyl‐terephthalic acid (TP) in different ratios under microwave condensation. The copolymers mPBI‐TP‐x were quaternized at N1/N3‐sites of benzimidazole unit in backbone with alkyl groups (R?CH3, C2H5, n‐C3H7, or n‐C4H9) to prepare soluble ionomers, and the corresponding membranes in hydroxyl ion form were prepared by a solution casting method and subsequent ion‐exchange process. The chemical structure of all membranes was characterized using FTIR and 1H NMR spectroscopy. The properties of ion exchange capacity, water uptake, swelling ratio, tensile strength, ionic conductivity, and alkaline stability were measured. Among the prepared membranes, the mPBI‐TP‐15%‐(n‐Bu) exhibited the excellent alkaline stability (only degradation ca. 5% under 1M NaOH aqueous solution at 60 °C for 800 h) and satisfactory OH? conductivity (46.66 mS/cm at 80 °C). The current research provides a useful exploration to commercial application of alkaline fuel cell. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1087–1096  相似文献   
148.
Herein we report a new ammoniation‐based chemical modification strategy for synthesis of continuous and uniform metal–organic framework (MOF)/polyvinylidene fluoride (PVDF) membranes with attractive performance. Ammoniation can promote the support PVDF membrane to produce amino groups, form a nanoparticle structure, and be well cross‐linked; therefore, the high‐density heterogeneous nucleation sites for MOFs growth were provided and the thermal stability and chemical resistance of composite membranes can be greatly improved. The high‐quality layers of representative Cu‐BTC and ZIF‐8 were synthesized on the chemically modified PVDF membranes. By ammoniation, ZIF‐7 can even be grown under harsh synthetic conditions such as in DMF precursor solutions at 403 K. The fabricated MOF/PVDF composite membranes with excellent hollow fiber structures and enhanced structural stability exhibited high H2 permselectivities for H2/CO2 and H2/N2.  相似文献   
149.
Natural materials and structures are increasingly becoming a source of inspiration for the design novel of engineering systems. In this context, the structure of fish skin, made of an intricate arrangement of flexible plates growing out of the dermis of a majority of fish, can be of particular interest for materials such as protective layers or flexible electronics. To better understand the mechanics of these composite shells, we introduce here a general computational framework that aims at establishing a relationship between their structure and their overall mechanical response. Taking advantage of the periodicity of the scale arrangement, it is shown that a representative periodic cell can be introduced as the basic element to carry out a homogenization procedure based on the Hill-Mendel condition. The proposed procedure is applied to the specific case of the fish skin structure of the Morone saxatilis, using a computational finite element approach. Our numerical study shows that fish skin possesses a highly anisotropic response, with a softer bending stiffness in the longitudinal direction of the fish. This softer response arises from significant scale rotations during bending, which induce a stiffening of the response under large bending curvature. Interestingly, this mechanism can be suppressed or magnified by tuning the rotational stiffness of the scale-dermis attachment but is not activated in the lateral direction. These results are not only valuable to the engineering design of flexible and protective shells, but also have implications on the mechanics of fish swimming.  相似文献   
150.
Five kinds of ammonium groups functionalized partially fluorinated poly(arylene ether) block copolymer membranes were prepared for investigating the structure–property relationship as anion exchange membranes (AEMs). Consequently, the pyridine (PYR)‐modified membrane showed the highest alkaline and hydrazine stability in terms of the conductivity, water uptake, and dry weight. The chloromethylated precursor block copolymers were reacted with amines, such as trimethylamine, N‐butyldimethylamine, 1‐methylimidazole, 1,2‐dimethylimidazole, and PYR to provide the target quaternized poly(arylene ether)s. The structures of the polymers, as well as model compounds and oligomers were well characterized by 1H NMR spectra. The obtained AEMs were subjected to water uptake and hydroxide ion conductivity measurements and stabilities in aqueous alkaline and hydrazine media. The pyridinium‐functionalized quaternized polymers membrane showed the highest alkaline and hydrazine stability with minor losses in the conductivity, water uptake, and dry weight. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 383–389  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号