首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   689篇
  免费   14篇
  国内免费   92篇
化学   697篇
晶体学   7篇
力学   49篇
数学   2篇
物理学   40篇
  2023年   10篇
  2022年   10篇
  2021年   13篇
  2020年   20篇
  2019年   13篇
  2018年   8篇
  2017年   16篇
  2016年   20篇
  2015年   12篇
  2014年   15篇
  2013年   45篇
  2012年   46篇
  2011年   44篇
  2010年   35篇
  2009年   45篇
  2008年   54篇
  2007年   56篇
  2006年   30篇
  2005年   29篇
  2004年   33篇
  2003年   24篇
  2002年   16篇
  2001年   22篇
  2000年   15篇
  1999年   22篇
  1998年   12篇
  1997年   10篇
  1996年   11篇
  1995年   20篇
  1994年   19篇
  1993年   13篇
  1992年   12篇
  1991年   7篇
  1990年   6篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1972年   1篇
排序方式: 共有795条查询结果,搜索用时 31 毫秒
81.
 The dynamic flow behavior of polyamide-6 (PA-6) and a nanocomposite (PNC) based on it was studied. The latter resin contained 2 wt% of organoclay. The two materials were blended in proportions of 0, 25, 50, 75, and 100 wt% PNC. The dynamic shear rheological properties of well-dried specimens were measured under N2 at T=240 °C, frequency ω=0.1–100 rad/s, and strains γ=10 and 40%. At constant T, γ, and ω the time sweeps resulted in significant increases of the shear moduli. The γ and ω scans showed a complex rheological behavior of all clay-containing specimens. At γ=10% the linear viscoelasticity was observed for all compositions only at ω>1 rad/s, while at γ=40% only for 0 and 25 wt% of PNC. However, the effect was moderate, namely decreasing G′ and G′′ (at ω=6.28 rad/s; γ=50%) by 15 and 7.5%, respectively. For compositions containing >25 wt% PNC two types of non-linearity were detected. At ω≤ωc=1.4 ± 0.2 rad/s yield stress provided evidence of a 3-D structure. At ω > ωc, G′ and G′′ were sensitive to shear history – the effect was reversible. From the frequency scans at ω > ωc the zero-shear relative viscosity vs concentration plot was constructed. The initial slope gave the intrinsic viscosity from which the aspect ratio of organoclay particles, p=287 ± 9 was calculated, in agreement with the value calculated from the reduced permeability data, p=286. Received: 24 May 2001 Accepted: 27 August 2001  相似文献   
82.
Under certain conditions, such as sufficiently low temperatures, high loading rates and/or highly triaxial stress states, glassy polymers display an unfavorable characteristic—brittleness. A technique used for reducing the brittleness (increasing the fracture toughness) of these materials is rubber toughening. While there is significant qualitative understanding of the mechanical behavior of rubber-toughened polymers, quantitative modeling tools for the large-strain deformation of rubber-toughened glassy polymers are largely lacking.In this paper, we develop a suite of numerical tools to investigate the mechanical behavior of rubber-toughened glassy polymers, with emphasis on rubber-toughened polycarbonate. The rubber particles are modeled as voids in view of their deformation-induced cavitation early during deformation. A three-dimensional micromechanical model of the heterogeneous microstructure is developed to study the effects of initial rubber particle (void) volume fraction on the underlying elasto-viscoplastic deformation mechanisms in the material, and how these mechanisms influence the macroscopic response of the material. A continuum-level constitutive model is developed for the large-strain elasto-viscoplastic deformation of porous glassy polymers, and it is calibrated against micromechanical modeling results for porous polycarbonate. The constitutive model can be used to study various boundary value problems involving rubber-toughened (porous) glassy polymers. As an example, the case of an axisymmetric notched bar is simulated for the case of polycarbonate with varying levels of initial porosity. The quality of the constitutive model calibration is assessed using a multi-scale modeling approach.  相似文献   
83.
In this work we present a composite model, which combines the approach of Poisson's function with the filament theory and requires three material parameters. We also suggest the form for a strain-energy function that approximates the constitutive equations of the composite model. Furthermore, a simple asymptotic analysis allows us to reduce the number of material constants to only two, thus, forming a new filament model. The predictive capability of the two models to reproduce the mechanical behaviour of elastomeric materials in deformation experiments is evaluated against the extensive data of Kawabata et al. (Macromolecules 14 (1981) 154). The models give excellent agreement in not only uniaxial and equibiaxial but also non-equibiaxial extension. Although being rather more simplistic in comparison with some successful network models involving non-Gaussian chain statistics, the two models conform much more closely to the classical experimental data of Treloar (Trans. Faraday Soc. 40 (1944) 59).  相似文献   
84.
A three-dimensional micromechanical unit cell model for particle-filled materials is presented. The cell model is based on a Voronoi tessellation of particles arranged on a body-centered cubic (BCC) array. The three-dimensionality of the present cell model enables the study of several deformation modes, including uniaxial, plane strain and simple shear deformations, as well as arbitrary principal stress states.The unit cell model is applied to studies on the micromechanical and macromechanical behavior of rubber-toughened polycarbonate. Different load cases are examined, including plane strain deformation, simple shear deformation and principal stress states. For a constant macroscopic strain rate, the different load cases show that the macroscopic flow strength of the blend decreases with an increase in void volume fraction, as expected. The main mechanism for plastic deformation is broad shear banding across inter-particle ligaments. The distributed nature of plastic straining acts to reduce the amount of macroscopic strain softening in the blend as the initial void volume fraction is increased. In the case of plane strain deformation, the plastic flow is observed to initiate across inter-particle ligaments in the direction of constraint. This particular mode of deformation could not have been captured using a two-dimensional, plane strain idealization of cylindrical voids in a matrix.The potential for localized crazing and/or cavitation in the matrix is addressed. It is observed that the introduction of voids acts to relieve hydrostatic stress in the matrix material, compared to the homopolymer. It is also seen that the predicted peak hydrostatic stress in the matrix is higher under plane strain deformation than under triaxial tension (with equal lateral stresses), for the same macroscopic stress triaxiality.The effect of void volume fraction on the macroscopic uniaxial tension behavior of the different blends is examined using a Considère construction for dilatant materials. The natural draw ratio was predicted to decrease with an increase in void volume fraction.  相似文献   
85.
Two chemosensors 4H‐1‐benzopyran‐3‐carboxaldehyde, 4‐oxo‐, 3‐(2‐phenylhydrazone), [I1] and 4H‐1‐benzopyran‐3‐carboxaldehyde, 4‐oxo‐, 3‐[2‐(2,4‐dinitrophenyl)hydrazone], [I2] with hydrazone‐NH group as binding site have been shown excellent selectivity for arsenite ion. It is confirmed by the UV‐vis titration that I2 is more selective than I1. The performance of the coated graphite electrode (CGE) was found to be better than polymeric membrane electrode (PME) in terms of linear range of 4.89×10?7–1.0×10?1 mol L?1, low detection limit of 8.31×10?8 mol L?1 and short response time. The proposed sensors were also used to determine the arsenite ion in different water samples.  相似文献   
86.
Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted.  相似文献   
87.
复杂条件下有机高分子材料的老化、寿命预测和防治研究对满足相关行业发展的迫切需求,实现节能减排、环境保护及可持续发展等战略目标具有重大意义。本文重点综述了近年来针对聚烯烃、工程塑料、橡胶、涂料等大宗高分子材料在我国复杂大气环境中的自然老化及人工模拟加速老化研究的新进展,对材料老化失效基本规律和分子机理、老化数据库的建立及老化分级图谱的绘制进行了介绍,探讨了户外自然环境和人工模拟环境下材料老化失效规律的对应关系、服役寿命理论的预测模型及失效防治延寿新方法,并对其中存在的问题及下一步发展方向进行了展望。  相似文献   
88.
《Electroanalysis》2017,29(6):1635-1642
Our studies are focused on the development of novel potentiometric sensors for the quantification of the neurotransmitter serotonin. Therefore, ion‐selective electrodes based on plasticized PVC membranes are applied. The electroactive part of the membrane consists of an ion pair complex formed between the protonated analyte and a carborane anion [Co(1,2‐C2B9H11)2]. The analytical performance of the electrode was studied regarding sensitivity, concentration range, limit of detection and potential stability. The ion‐selective electrodes were optimized with respect to the material of the transducing element, as well as the membrane thickness and its composition. Stable, all solid state ISEs could be developed, using the non‐polar plasticizer NPOE and a graphite rod with high surface area as transducing element. We thus achieved a near Nernstian response over three decades of concentration (2.25⋅10‐5‐1.00⋅10‐2 M) and a limit of detection in the μ‐molar range for the optimized electrodes. The electrodes could successfully be miniaturized using carbon based screen printed electrodes.  相似文献   
89.
In this work, poly((N,N-dimethyl amino)ethyl methacrylate) (PDMAEMA) homopolymers are synthesized using RAFT technique, which is then used as stabilizers to prepare miniemulsion droplets in a toluene/hexadecane(HD)/1,2-Bis-(2-iodoethyl)ethane(BIEE)/hydrophobic molecule/water mixture. Upon the reaction between BIEE and the stabilizers of miniemulsion droplets, the polymeric nanocapsules are formed and capable of encapsulating hydrophobic molecule in their oil core in one-step reaction. The release of hydrophobic cargo from the nanocapsules can be controlled by the variation of amount of surfactant (Tween®20) in the release medium and a long duration sustained release was achieved.  相似文献   
90.
The constitutive responses of three glassy thermoset polymers at impact rates of strain and slower, together with measurements of adiabatic heating, were reported earlier by the authors. The results are interpreted here in the context of a constitutive model proposed previously for amorphous polymers, expanded to incorporate strain-softening and the adiabatic heating deficit. In terms of the model, both features are a natural consequence of strain-induced evolution of the glass structure, as represented by Tool's “fictive temperature”—the phenomenon of structural rejuvenation. A representation is proposed for the evolution of fictive temperature with plastic strain, motivated by an approximate treatment of the kinetics of physical ageing/rejuvenation. Formulated in this manner, the model agrees reasonably well with experimental results across the wide range of strain rates of the previous experiments, 10−3 to , and across most of the range of strain to failure in compression. At the highest strains, however, an additional adiabatic heating deficit appears that is not predicted by the model, either suggesting the onset of structural breakdown possibly associated with the appearance of cracks or reflecting a need for better physical understanding of large deformations in glassy polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号