首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5611篇
  免费   133篇
  国内免费   670篇
化学   3368篇
晶体学   23篇
力学   237篇
综合类   32篇
数学   1786篇
物理学   968篇
  2024年   9篇
  2023年   153篇
  2022年   66篇
  2021年   86篇
  2020年   157篇
  2019年   111篇
  2018年   99篇
  2017年   193篇
  2016年   194篇
  2015年   119篇
  2014年   183篇
  2013年   503篇
  2012年   221篇
  2011年   299篇
  2010年   221篇
  2009年   365篇
  2008年   387篇
  2007年   373篇
  2006年   321篇
  2005年   295篇
  2004年   255篇
  2003年   191篇
  2002年   185篇
  2001年   157篇
  2000年   158篇
  1999年   134篇
  1998年   121篇
  1997年   128篇
  1996年   113篇
  1995年   75篇
  1994年   88篇
  1993年   78篇
  1992年   62篇
  1991年   40篇
  1990年   37篇
  1989年   33篇
  1988年   26篇
  1987年   30篇
  1986年   22篇
  1985年   17篇
  1984年   22篇
  1983年   6篇
  1982年   19篇
  1981年   19篇
  1980年   10篇
  1979年   8篇
  1978年   7篇
  1977年   6篇
  1973年   3篇
  1972年   3篇
排序方式: 共有6414条查询结果,搜索用时 31 毫秒
951.
We introduce the class of weak amicable T‐matrices and use it to construct a class of orthogonal designs, for p = 1 and for p a prime power ≡ 3 (mod 4), and all odd q, q ≤ 21. This class includes new Plotkin arrays of order 24, 40, 56 and for the first time, of orders 8q, q ∈ {9,11,13,15,17,19,21}. © 2006 Wiley Periodicals, Inc. J Combin Designs 16: 44–52, 2008  相似文献   
952.
The deployment of lithium metal anode in solid-state batteries with polymer electrolytes has been recognized as a promising approach to achieving high-energy-density technologies. However, the practical application of the polymer electrolytes is currently constrained by various challenges, including low ionic conductivity, inadequate electrochemical window, and poor interface stability. To address these issues, a novel eutectic-based polymer electrolyte consisting of succinonitrile (SN) and poly (ethylene glycol) methyl ether acrylate (PEGMEA) is developed. The research results demonstrate that the interactions between SN and PEGMEA promote the dissociation of the lithium difluoro(oxalato) borate (LiDFOB) salt and increase the concentration of free Li+. The well-designed eutectic-based PAN1.2-SPE (PEGMEA: SN=1: 1.2 mass ratio) exhibits high ionic conductivity of 1.30 mS cm−1 at 30 °C and superior interface stability with Li anode. The Li/Li symmetric cell based on PAN1.2-SPE enables long-term plating/stripping at 0.3 and 0.5 mA cm−2, and the Li/LiFePO4 cell achieves superior long-term cycling stability (capacity retention of 80.3 % after 1500 cycles). Moreover, Li/LiFePO4 and Li/LiNi0.6Co0.2Mn0.2O2 pouch cells employing PAN1.2-SPE demonstrate excellent cycling and safety characteristics. This study presents a new pathway for designing high-performance polymer electrolytes and promotes the practical application of high-stable lithium metal batteries.  相似文献   
953.
Organic ultralong room temperature phosphorescence (RTP), or organic afterglow, is a unique phenomenon, gaining widespread attention due to its far-reaching application potential and fundamental interest. Here, two laterally expanded 9,10-dimesityl-dihydro-9,10-diboraanthracene (DBA) derivatives are demonstrated as excellent afterglow materials for red and blue-green light emission, which is traced back to persistent thermally activated delayed fluorescence and RTP. The lateral substitution of polycyclic DBA scaffold, together with weak transversal electron-donating mesityl groups, ensures the optimal molecular properties for (reverse) intersystem crossing and long-lived triplet states in a rigid poly(methyl methacrylate) matrix. The achieved afterglow emission quantum yields of up to 3 % and 15 %, afterglow lifetimes up to 0.8 s and 3.2 s and afterglow durations up to 5 s and 25 s (for red and blue-green emitters, respectively) are attributed to the properties of single molecules.  相似文献   
954.
Ionic liquids (ILs)-incorporated solid-state polymer electrolytes (iono-SPEs) have high ionic conductivities but show non-uniform Li+ transport in different phases. This work greatly promotes Li+ transport in polymer phases by employing a poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE), PTC] as the framework of ILs to prepare iono-SPEs. Unlike PVDF, PTC with suitable polarity shows weaker adsorption energy on IL cations, reducing their possibility of occupying Li+-hopping sites. The significantly higher dielectric constant of PTC than PVDF facilitates the dissociation of Li-anions clusters. These two factors motivate Li+ transport along PTC chains, narrowing the difference in Li+ transport among varied phases. The LiFePO4/PTC iono-SPE/Li cells cycle steadily with capacity retention of 91.5 % after 1000 cycles at 1 C and 25 °C. This work paves a new way to induce uniform Li+ flux in iono-SPEs through polarity and dielectric design of polymer matrix.  相似文献   
955.
Lithium (Li) metal anodes have the highest theoretical capacity and lowest electrochemical potential making them ideal for Li metal batteries (LMBs). However, Li dendrite formation on the anode impedes the proper discharge capacity and practical cycle life of LMBs, particularly in carbonate electrolytes. Herein, we developed a reactive alternative polymer named P(St-MaI) containing carboxylic acid and cyclic ether moieties which would in situ form artificial polymeric solid electrolyte interface (SEI) with Li. This SEI can accommodate volume changes and maintain good interfacial contact. The presence of carboxylic acid and cyclic ether pendant groups greatly contribute to the induction of uniform Li ion deposition. In addition, the presence of benzyl rings makes the polymer have a certain mechanical strength and plays a key role in inhibiting the growth of Li dendrites. As a result, the symmetric Li||Li cell with P(St-MaI)@Li layer can stably cycle for over 900 h under 1 mA cm−2 without polarization voltage increasing, while their Li||LiFePO4 full batteries maintain high capacity retention of 96 % after 930 cycles at 1C in carbonate electrolytes. The innovative strategy of artificial SEI is broadly applicable in designing new materials to inhibit Li dendrite growth on Li metal anodes.  相似文献   
956.
Zn-I2 batteries have attracted attention due to their low cost, safety, and environmental friendliness. However, their performance is still limited by the irreversible growth of Zn dendrites, hydrogen evolution reactions, corrosion, and shuttle effect of polyiodide. In this work, we have prepared a new porous polymer (CD-Si) by nucleophilic reaction of β-cyclodextrin with SiCl4, and CD-Si is applied to the solid polymer electrolyte (denoted PEO/PVDF/CD-Si) to solve above-mentioned problems. Through the anchoring of the CD-Si, a conductive network with dual transmission channels was successfully constructed. Due to the non-covalent anchoring effect, the ionic conductivity of the solid polymer electrolytes (SPE) can reach 1.64×10−3 S cm−1 at 25 °C. The assembled symmetrical batteries can achieve highly reversible dendrite-free galvanizing/stripping (stable cycling for 7500 h at 5 mA cm−2 and 1200 h at 20 mA cm−2). The solid-state Zn-I2 battery shows an ultra-long life of over 35,000 cycles at 2 A g−1. Molecular dynamics simulations are performed to elucidate the working mechanism of CD-Si in the polymer matrix. This work provides a novel strategy towards solid electrolytes for Zn-I2 batteries.  相似文献   
957.
We introduce a class of single-chain nanoparticles (SCNPs) that respond to visible light (λmax=415 nm) with complete unfolding from their compact structure into linear chain analogues. The initial folding is achieved by a simple esterification reaction of the polymer backbone constituted of acrylic acid and polyethylene glycol carrying monomer units, introducing bimane moieties, which allow for the photochemical unfolding, reversing the ester-bond formation. The compaction and the light driven unfolding proceed cleanly and are readily followed by size exclusion chromatography (SEC) and diffusion ordered NMR spectroscopy (DOSY), monitoring the change in the hydrodynamic radius (RH). Importantly, the folding reaction and the light-induced unfolding are reversible, supported by the high conversion of the photo cleavage. As the unfolding reaction occurs in aqueous systems, the system holds promise for controlling the unfolding of SCNPs in biological environments.  相似文献   
958.
Insolubility of functional molecules caused by polymorphism sometimes poses limitations for their solution-based processing. Such a situation can also occur in the preparation processes of supramolecular polymers formed in a solution. An effective strategy to address this issue is to prepare amorphous solid states by introducing a “coformer” molecule capable of inhibiting the formation of an insoluble polymorph through co-aggregation. Herein, inspired by the coformer approach, we demonstrated a solubility enhancement of a barbiturate π-conjugated compound that can supramolecularly polymerize through six-membered hydrogen-bonded rosettes. Our newly synthesized supramolecular coformer molecule features a sterically demanding methyl group in the π-conjugated unit of the parent molecule. Although the parent molecule exhibits low solubility in nonpolar solvents due to the formation of a crystalline polymorph comprising a tape-like hydrogen-bonded array prior to the supramolecular polymerization, mixing with the coformer compound enhanced the solubility by inhibiting mesoscopic organization of the tapes. The two monomers were then co-polymerized into desired helicoidal supramolecular polymers through the formation of heteromeric rosettes.  相似文献   
959.
Despite intensive research on sustainable elastomers, achieving elastic vitrimers with significantly improved mechanical properties and recyclability remains a scientific challenge. Herein, inspired by the classical elasticity theory, we present a design principle for ultra-tough and highly recyclable elastic vitrimers with a defined network constructed by chemically crosslinking the pre-synthesized disulfide-containing polydimethylsiloxane (PDMS) chains with tetra-arm polyethylene glycol (PEG). The defined network is achieved by the reduced dangling short chains and the relatively uniform molecular weight of network strands. Such elastic vitrimers with the defined network, i.e., PDMS-disulfide-D, exhibit significantly improved mechanical performance than random analogous, previously reported PDMS vitrimers, and even commercial silicone-based thermosets. Moreover, unlike the vitrimers with random network that show obvious loss in mechanical properties after recycling, those with the defined network enable excellent thermal recyclability. The PDMS-disulfide-D also deliver comparable electrochemical signals if utilized as substrates for electromyography sensors after the recycling. The multiple relaxation processes are revealed via a unique physical approach. Multiple techniques are also applied to unravel the microscopic mechanism of the excellent mechanical performance and recyclability of such defined network.  相似文献   
960.
Methylene is found in the repeat units of many polymers including proteins. In some cases it appears to be a useful reporter of variation in local environment whilst in other contexts average behaviour seems to dominate. In this paper we apply a particular 2DIR technique to a range of systems containing methylene groups, showing that mode frequencies, linewidths and splittings can be easily extracted even when the infrared absorption bands are too congested to allow reliable analysis. 2DIR spectra of polyethylene and several liquid alkanes are compared and it is shown for the case of l-arginine that the methylene scissor modes are split and that this can be resolved by tracking the 2DIR spectrum as a function of time. Calculations from first principles reveal that for most of the methylene modes studied, electrical anharmonicity is the dominant contributor to the 2DIR cross-peak intensity, with the mechanical anharmonicity making only a small contribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号