首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   2篇
  国内免费   68篇
化学   304篇
晶体学   1篇
力学   4篇
物理学   26篇
  2023年   6篇
  2022年   1篇
  2021年   7篇
  2020年   7篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   11篇
  2015年   3篇
  2014年   12篇
  2013年   16篇
  2012年   7篇
  2011年   17篇
  2010年   10篇
  2009年   23篇
  2008年   29篇
  2007年   27篇
  2006年   18篇
  2005年   17篇
  2004年   23篇
  2003年   14篇
  2002年   6篇
  2001年   9篇
  2000年   11篇
  1999年   11篇
  1998年   13篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1985年   1篇
排序方式: 共有335条查询结果,搜索用时 0 毫秒
21.
Core-shell colloidal particles were prepared with the core of monodisperse melamine formaldehyde particles (MF) with a diameter of 3.5 μm. The shell deposited on the core by the layer-by-layer (LbL) self-assembly was made with a copolymer ANp3 of 2-acrylamido-2-methylpropanesulfonate sodium (AMPS) and 3 mol% naphthalene label monomer and poly(diallyldimethylammonium chloride) (PD). Nonradiative energy transfer (NRET) from the naphthalene labels deposited on the MF particles to pyrene labels at a polyelectrolyte APy3, a copolymer of AMPS and 3 mol% pyrene label monomer, or to an ionic pyrene probe 1-pyrenemethylamine hydrochloride (PyMeA · HCl) in water was observed. The NRET efficiency was expressed as the emission intensity ratio I/I0 of naphthalene with and without existence of pyrene in the surrounding solution. With increasing pyrene concentration, I/I0 decreased down to about 0.2 and the mechanism for this NRET from the inner naphthalene label to the pyrene labels in solution is still ambiguous.  相似文献   
22.
Novel polyelectrolyte complexes (PEC) between the polyampholyte N-carboxyethylchitosan (CECh) and polyacid or polybase have been prepared. The complex formation between CECh and poly(2-acryloylamido-2-methylpropanesulfonic acid) (PAMPS), poly(acrylic acid) (PAA) or poly(ethylene imine) (PEI) has been studied. The complex CECh/PAMPS is formed in the pH range from 1.2 to 6.0. The complex CECh/PAA is formed in the range 4.8-6.0 and CECh/PEI—from pH 5.4 to 7.0. The stoichiometry of the complexes depends on the pH value of the medium. In case of CECh/PAMPS and CECh/PAA the maximum quantity of complex is formed in excess of CECh and in the case of CECh/PEI—in excess of PEI. It has been shown that PEC formation between CECh and PAMPS improves the haemocompatibility of CECh.  相似文献   
23.
The layer-by-layer (LbL) assembly process of creating highly structured thin films derived from layers of polyelectrolytes and nanoparticles was adopted in this study to modify the surface of lignocellulosic fibers. Aqueous dispersions of clay nanoplatelets were created with ultrasonication and characterized with dynamic light scattering and atomic force microscopy in which confirmed the presence of individual clay nanoplatelets. Film thickness of never-dried clay and poly(diallyldimethylammonium chloride) (PDDA) multilayers was studied with a quartz crystal microbalance with dissipation monitoring (QCM-D). Using identical LbL deposition parameters, a slurry of steam-exploded wood fibers was modified by alternate adsorption of PDDA and clay with multiple rinsing steps after each adsorption cycle. Zeta potential measurements were used to characterize the fiber surface charges after each adsorption step while SEM images revealed that the LbL film masked the cellulose microfibril structure. Using a thermogravimetric analyzer, LbL modified steam-exploded wood fibers were observed to attain increased thermal stability relative to the unmodified material tested in both air and nitrogen atmospheres. Significant char for the LbL clay coated steam-exploded wood suggests the multilayer film serves as a barrier creating an insulating layer to prevent further decomposition of the material. This nanotechnology may have a positive impact on the processing of lignocellulosic fibers in thermoplastic matrices, designing of paper-based overlays for building products, and modification of cellulosic fibers for textiles.  相似文献   
24.
Poly[lithium-N(4-sulfophenyl) maleimide -co- methoxy oligo-(oxyethylene) methacrylates] [P(LiSMOEn)s] with three different oligoether side chains and different salt concentrations were synthesized. The copolyelectrolytes are essentially random in structure, with blocks of methoxy oligo(oxyethylene) meth-acrylate (MOEnM) recurring sporadically in between the salt units of N(4-sulfophenyl) maleimide. They all show two glass transitions in the temperature range of ?100 to 100°C. The first one below ?30°C is assigned to the oligo(oxyethylene) side chain (T g1), while the second one located between 20 and 50°C is attributed to the main chain of the polymer host (T g2). The maximum ionic conductivity of the copolymer electrolytes, 1.6 × 10?7 S cm?1 at 25°C, occurs at lithium salt concentration [Li+]/[EO] = 2.2 mol%. The ionic conductive behavior of the copolyelectrolytes follows the Vogel-Tammann-Fulcher (VTF) equation. Moreover, a special VTF behavior exists in the copolymers with shorter oligoether side chain and higher salt concentration. Sweep voltammetric results indicate that these copolyelectrolytes have a good electrochemical stability window.  相似文献   
25.
PS胶体粒子表面逐层自组装固定化SOD及其生物活性   总被引:3,自引:0,他引:3  
通过逐层自组装技术成功地把超氧化物歧化酶(SOD)吸附在聚苯乙烯(PS)胶体粒子表面.zeta电位和TEM证明了聚阳离子或聚阴离子型SOD与相反电荷的聚电解质在PS胶体粒子表面的交替吸附.通过测定SOD被胶体粒子吸附后上清液的生物活性,得到聚阴离子型SOD(pH=8.0)和聚阳离子型SOD(pH=4.3)在PS胶体粒子表面的吸附量分别为12和51IU,相对活性分别为23.4%和2.9%.聚阴离子型SOD在PS胶体粒子表面能形成平滑规整的膜,导致较高的相对活性.研究结果表明,通过调节pH值,可以优化自组装固定化酶的聚集状态和生物活性  相似文献   
26.
本文结合自组装单分子层膜(SAMs)和聚电解质静电吸附组装技术,提出了一种新的用于气相压电免疫检测的生物分子固定化方法,研制了一种用于检测小鼠IgG抗体的压电免疫传感器。首先在石英晶片的金电极表面自组装了一层L-胱氨酸SAMs,再在膜上组装带相反电荷的海藻酸钠,最后通过调节pH值定向固定羊抗鼠纯化抗体,优化了固定条件。通过超声雾化法产生的小鼠IgG气溶胶,研制成了直接气相检测小鼠IgG的压电免疫系统。结果表明,该方法对所固定的生物分子活性影响较小,传感器对小鼠IgG的响应快,灵敏度高,在0.14~6μg.μL-1范围内具有良好的线性关系,精密度好,再生方便。  相似文献   
27.
The hydrophilic characteristic of the polyelectrolyte, poly(4-styrenesulfonic acid) (PSS), was modified by associating with the surfactant, dodecyltrimethylammonium bromide (DTMAB), to form polyelectrolyte–surfactant (PSS–DTMA) Langmuir layers at air/liquid interfaces. The interfacial behavior of the PSS–DTMA complexes was investigated with the Langmuir trough technique. The mixed PSS–DTMA Langmuir layers were then used as the two-dimensional templates to incorporate with silver precursors from the subphase, and were transferred onto mica substrates with the Langmuir–Blodgett (LB) deposition technique. The silver nanoparticles were fabricated in the resulting LB films with UV irradiation, and the morphology of the silver nanoparticle structures was analyzed by atomic force microscopy (AFM). The results indicated that increasing the DTMA+ content in the mixed PSS–DTMA system would enhance the hydrophobic characteristic of the complexes and then form stable PSS–DTMA Langmuir layers at interfaces. In addition, by varying the DTMA+ content, one could adjust the charge density in the Langmuir layer templates and thus control the association behavior between the two-dimensional templates and the silver precursors in the subphases. The AFM images demonstrated that the formation of the silver nanoparticle structures in the UV-treated LB films could be regulated with the DTMA+ content in the Langmuir layer templates. It is inferred that the polyelectrolyte–surfactant template offers a potential of designing structures of polyelectrolyte–nanoparticle materials with a template-synthesis procedure.  相似文献   
28.
The achievements in the area of enzyme stabilization based on electrolytes, polyelectrolytes and polyols is reviewed, in the context of biosensor applications. Both the storage and operational stabilities of the biosensors can be improved using these stabilizers. The deactivation of the enzymes used for the development of biosensors from thermal shock, proteolytic degradation, and non-specific metal-catalyzed oxidation can be drastically reduced with the use of one or more of these stabilizers. It is attempted to deconvolute the effect of these additives on (a) the storage stability or shelf life, and (b) the operational stabilities of the biosensors. Even though there are a large number of techniques and reports dealing with enzyme stabilization, their application to biosensor technology is still very limited. It is thus concluded that the use of the existing enzyme stabilization techniques will have a drastic effect on the storage and operational stabilities of biosensors in the near future.  相似文献   
29.
Polymer-stabilized foams and foam films have received considerable attention during the past years. This review paper gives an overview of recent studies dealing with polyelectrolyte/surfactant mixtures, proteins, and microgels adsorbed at single air/water interfaces, in foam films and in macroscopic foams. These polymeric systems have in common that their structure or shape changes when adsorbing at an air/water interface. These structural changes in comparison to their bulk behavior greatly influence the properties of foam films and foams. Regarding the foam stability, formation of adsorbed layers or aggregates plays an important role. The discrepancy between stabilization of macroscopic foams and destabilization of single foam films might be attributed to the blockage of Plateau borders and, therefore, slowed down drainage. Another important parameter is the interfacial viscoelasticity.  相似文献   
30.
本文利用原子转移自由基聚合法(ATRP),通过连续投料法在室温下一步合成了具有pH响应性质的糖聚合物,并且简单地通过控制甲基丙烯酸-2-二甲氨基乙酯(DMAEMA)、甲基丙烯酸-2-二乙氨基乙酯(DEAEMA)单体投料比即实现了对糖聚合物胶束的临界pH转变点在人体生理pH值附近的调节,这对于设计新型的药物控释系统具有重要意义.此外,糖聚合物中的P(DMAEMA-co-DEAEMA)嵌段在一定条件下为带正电荷的聚电解质.因此,本文中合成的糖聚合物不但可以用作传统憎水药物的载体,还可望成为带有负电荷的新型药物例如单链DNA(ssDNA) 等的载体.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号