首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1334篇
  免费   211篇
  国内免费   94篇
化学   1551篇
晶体学   5篇
力学   21篇
综合类   2篇
数学   2篇
物理学   58篇
  2024年   1篇
  2023年   7篇
  2022年   31篇
  2021年   34篇
  2020年   41篇
  2019年   43篇
  2018年   28篇
  2017年   48篇
  2016年   95篇
  2015年   60篇
  2014年   72篇
  2013年   128篇
  2012年   73篇
  2011年   58篇
  2010年   72篇
  2009年   59篇
  2008年   73篇
  2007年   80篇
  2006年   65篇
  2005年   80篇
  2004年   73篇
  2003年   77篇
  2002年   38篇
  2001年   31篇
  2000年   19篇
  1999年   36篇
  1998年   21篇
  1997年   36篇
  1996年   24篇
  1995年   27篇
  1994年   35篇
  1993年   21篇
  1992年   20篇
  1991年   8篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有1639条查询结果,搜索用时 31 毫秒
101.
A systematic study of the influence of solvent and the size of C3‐symmetric discotics on their supramolecular polymerization mechanism is presented. The cooperativity of the self‐assembly of the reported compounds is directly related to their gelation ability. The two series of C3‐symmetric discotics investigated herein are based on benzene‐1,3,5‐tricarboxamides (BTAs) and oligo(phenylene ethynylene)‐based tricarboxamides (OPE? TAs) that are peripherally decorated with achiral ( 1 a and 2 a ) or chiral N‐(2‐aminoethyl)‐3,4,5‐trialkoxybenzamide units ( 1 b and 2 b ). The supramolecular polymerization of compounds 1 a , b and 2 a , b has been exhaustively investigated in a number of solvents and by using various techniques: variable‐temperature circular dichroism (VT‐CD) spectroscopy, concentration‐dependent 1H NMR spectroscopy, and isothermal titration calorimetry (ITC). The supramolecular polymerization mechanism of compounds 2 is highly cooperative in solvents such as methylcyclohexane and toluene and is isodesmic in CHCl3. Unexpectedly, chiral compound 1 b is practically CD‐silent, in contrast with previously reported BTAs. ITC measurements in CHCl3 demonstrated that the supramolecular polymerization of BTA 1 a is isodesmic. These results confirm the strong influence of the π‐surface of the central aromatic core of the studied discotic and the branched nature of the peripheral side chains on the supramolecular polymerization. The gelation ability of these organogelators is negated in CHCl3, in which the supramolecular polymerization mechanism is isodesmic.  相似文献   
102.
A homologous series of oligo(amide–triazole)s (OAT) [ OAT‐CO2H‐2 n and OAT‐COPrg‐(2 n +1) ] with an increasing number of primary amide (CONH) and triazole hydrogen‐bonding functionalities was prepared by an iterative synthetic procedure. It was found that their self‐assembly and thermoreversible gelation strength had a strong correlation to the number of hydrogen‐bonding moieties in the oligomers. There also existed a threshold value of the number of CONH units, above which all the oligomers became organogelators. Hence, oligomers with ≤4 CONH units are devoid of intermolecular hydrogen bonding and also non‐organogelating, whereas those that contain >4 CONH units show intermolecular association and organogelating properties. For the organogelators, the Tgel value increases monotonically with increasing number of CONH units. On the basis of FTIR measurements, both the CONH and triazole C? H groups were involved in the hydrogen‐bonding process. A mixed xerogel that consisted of a 1:1 weight ratio of two oligomers of different lengths ( OAT‐CO2H‐6 and OAT‐CO2H‐12 ) was found to show microphase segregation according to differential scanning calorimetry, thus indicating that oligomers that bear a different number of hydrogen‐bonding units exhibited self‐sorting to maximize the extent of intermolecular hydrogen bonding in the xerogel state.  相似文献   
103.
Novel hydrogel phases based on positively charged and zwitterionic surfactants, namely, N‐[p‐(n‐dodecyloxybenzyl)]‐N,N,N‐trimethylammonium bromide (pDOTABr) and p‐dodecyloxybenzyldimethylamine oxide (pDOAO), which combine pristine carbon nanotubes (CNTs), were obtained, thus leading to stable dispersions and enhanced cross‐linked networks. The composite hydrogel featuring a well‐defined nanostructured morphology and an overall positively charged surface was shown to efficiently immobilise a polyanionic and redox‐active tetraruthenium‐substituted polyoxometalate (Ru4POM) by complementary charge interactions. The resulting hybrid gel has been characterised by electron microscopy techniques, whereas the electrostatic‐directed assembly has been monitored by means of fluorescence spectroscopy and ζ‐potential tests. This protocol offers a straightforward supramolecular strategy for the design of novel aqueous‐based electrocatalytic soft materials, thereby improving the processability of CNTs while tuning their interfacial decoration with multiple catalytic domains. Electrochemical evidence confirms that the activity of the catalyst is preserved within the gel media.  相似文献   
104.
The results presented here highlight the extremely useful nature of ultra‐short peptides as building blocks in the development of smart multicomponent supramolecular devices. A facile bottom‐up strategy for the synthesis of a small library of stimuli‐responsive smart organogelators has been proposed based on the predictive self‐assembly of ultra‐short peptides. More importantly, the narcissistic self‐sorting of the gelators has been evaluated as a simple method for the efficient co‐assembly of a donor–acceptor dual‐component gel, allowing the investigation of possible future applications of similar systems in the development of a supramolecular photo‐conversion device. Interestingly, it was observed that the self‐organization of the components can lead to highly ordered systems in which discrimination between compatible and non‐compatible building blocks directs the effective organization of the chromophores and gives rise to the formation of an excited‐state complex with exciplex‐like emission. The current report may prove important in the development of organogel‐based multicomponent smart devices.  相似文献   
105.
A current challenge for proteomics is detecting proteins over the large concentration ranges found in complex biological samples such as whole‐cell extracts. Currently, no unbiased, whole‐proteome analysis scheme is capable of detecting the full range of cellular proteins. This is due in part to the limited dynamic range of the detectors used to sense proteins or peptides. We present a new technology, structured illumination (SI) gel imager, which detects fluorescently labeled proteins in electrophoretic gels over a 1 000 000‐fold concentration range. SI uses computer‐generated masks to attenuate the illumination of highly abundant proteins, allowing for long exposures of low‐abundance proteins, thus avoiding detector saturation. A series of progressively masked gel images are assembled into a single, very high dynamic range image. We demonstrate that the SI imager can detect proteins over a concentration range of approximately 1 000 000‐fold, making it a useful tool for comprehensive, unbiased proteome‐wide surveys.  相似文献   
106.
Poly(N,N′‐methylenebisacrylamide–4‐vinylpyridine) (P(MBA‐4VP)) nanowires loaded with silver nanoparticles (Ag NPs) have been fabricated by silver metallogel template copolymerization, and subsequently, silver ions are reduced instead of the template being removed. Ag NPs with a diameter of 5–15 nm were dispersed throughout the core of P(MBA‐4VP) nanowires. The size and distribution of the formed Ag NPs could be finely controlled by reduction time. The pH sensitivity of P(MBA‐4VP) nanowires offers the possibility of Ag NP release from the nanowires under acidic conditions. The photocatalytic performance of the P(MBA‐4VP) nanowires loaded with Ag NPs was evaluated for the degradation of methylene blue (MB) under UV light irradiation. Their rate of degradation is dependent on the content and size of the Ag NPs, as well as the pH values of the MB solution. Moreover, the P(MBA‐4VP) nanowires loaded with Ag NPs exhibited high photostability, and the photocatalytic efficiency reduced by only 1.81 % after being used three times.  相似文献   
107.
108.
Supramolecular gels formed by the self-assembly of organic molecules are useful in many areas from materials to medicine. Of the different applications, exploitation of gels for the visual detection of analytes is a fairly recent trend in gel chemistry. Most of the gel-based sensors rely on non-covalent interactions between the gelator molecules and the added chemical analytes and therefore, often suffer from less selectivity and long response time. In this context, dosimetric gelator probes are superior to other gel-based sensors with high selectivity and fast response time. Unlike non-covalent binding sites, dosimetric gelators typically contain a reaction centre and undergo a specific chemical reaction selective to an analyte resulting in either formation or rupturing of covalent bonds. In this review, we provide an up-to-date report of various reaction-based gel systems applied for the sensing of analytes. We elaborately discuss the concept, design principles, self-assembly properties, and reaction mechanisms of such gelators. We also highlight the limitations, challenges, and the necessity of further exploration of dosimetric gels in this domain.  相似文献   
109.
王丽媛  张朦  王静  袁玲  任林  高庆宇 《化学进展》2022,34(4):824-836
定向运动是生命体最基本的功能,是其进化、生存和繁衍的前提。近年来为了研究生命体的运动机制,许多人工系统被相继开发并用于模拟部分生命体的运动行为。在诸多人工仿生系统里,自振荡凝胶由于同时具有内部驱动产生动能、运动定向性、无缆化和环境自适应等性能而备受瞩目。本文介绍了自振荡凝胶仿生运动的化学-机械能转换的理论根源并综述了仿生运动模式研究近期的进展,在此基础上展望了自振荡凝胶运动研究面临的机遇、挑战和未来发展方向。  相似文献   
110.
Maltose is a ubiquitous disaccharide produced by the hydrolysis of starch. Amphiphilic ureas bearing hydrophilic maltose moiety were synthesized via the following three steps: I) construction of urea derivatives by the condensation of 4-nitrophenyl isocyanate and alkylamines, II) reduction of the nitro group by hydrogenation, and III) an aminoglycosylation reaction of the amino group and the unprotected maltose. These amphiphilic ureas functioned as low molecular weight hydrogelators, and the mixtures of the amphipathic ureas and water formed supramolecular hydrogels. The gelation ability largely depended on the chain length of the alkyl group of the amphiphilic urea; amphipathic urea having a decyl group had the highest gelation ability (minimum gelation concentration=0.4 mM). The physical properties of the supramolecular hydrogels were evaluated by measuring their thermal stability and dynamic viscoelasticity. These supramolecular hydrogels underwent gel-to-sol phase transition upon the addition of α-glucosidase as a result of the α-glucosidase-catalyzed hydrolysis of the maltose moiety of the amphipathic urea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号