首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   3篇
化学   54篇
晶体学   1篇
  2022年   8篇
  2021年   11篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2013年   4篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2001年   2篇
排序方式: 共有55条查询结果,搜索用时 31 毫秒
11.
Melleumin A (1), a novel peptide lactone, has been isolated from the laboratory-cultured plasmodium of myxomycete Physarum melleum, and its structure was elucidated by spectral data. Melleumin A (1) consisted of four residues (p-methoxybenzoic acid, l-threonine, glycine, and an unusual amino acid, a tyrosine-attached acetic acid).  相似文献   
12.
Jan Jacobs 《Tetrahedron》2008,64(2):412-418
For the first time, a synthesis of 1-hydroxy-3,4-dihydro-1H-benz[g]isochromene-5,10-dione (3), which is claimed to be a bioactive compound isolated from Psychotria camponutans, was achieved with a phthalide annulation reaction using 3-cyano-1(3H)-isobenzofuranone (5) and 5,6-dihydropyran-2-one (6) and subsequent reduction of the lactone moiety in the key steps. However, full spectral characterization of the synthesized target compound revealed that the isolated compound is not 1-hydroxy-3,4-dihydro-1H-benz[g]isochromene-5,10-dione (3). Structure revision shows the previously isolated compound to be the known psychorubrin (2).  相似文献   
13.
Efficient synthesis is essential for antimalarial therapeutics. A four-step route has been established for the synthesis of 7-(2-carboxyethyl)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole 1 that is a potent new class boron-containing antimalarial agent in preclinical development with IC50 = 26 nM against the malaria parasite Plasmodium falciparum.  相似文献   
14.
The intraerythrocytic stage of Plasmodium falciparum alters the characteristics of its host cell by exporting selected plasmodial proteins. Although it is clear that the physicochemical and immunobiological properties of the host cell are modulated during parasite development, the involved plasmodial proteins and their mode of action are not completely known. Using cetyltrimethylammonium bromide (CTAB) or benzyldimethyl-n-hexadecylammonium chloride (16-BAC) for the first dimension and SDS for the second dimension, we separated proteins from membranes of human erythrocytes and of erythrocytes infected with the malaria parasite P. falciparum. Protein spots were analyzed by MALDI-TOF/TOF MS and annotated in respective 2D master gels. By using the alternative 2D approach, characteristic host cell membrane proteins and, more importantly, membrane-associated and exported plasmodial proteins were identified that might play a role in parasite-induced host cell modulation.  相似文献   
15.
On the basis of the finding that various aminoalkyl-substituted chromene and chromane derivatives possess strong and highly selective in vitro bioactivity against Plasmodium falciparum, the pathogen responsible for tropical malaria, we performed a structure–activity relationship study for such compounds. With structures and activity data of 52 congeneric compounds from our recent studies, we performed a three-dimensional quantitative structure–activity relationship (3D-QSAR) study using the comparative molecular field analysis (CoMFA) approach as implemented in the Open3DQSAR software. The resulting model displayed excellent internal and good external predictive power as well as good robustness. Besides insights into the molecular interactions and structural features influencing the antiplasmodial activity, this model now provides the possibility to predict the activity of further untested compounds to guide our further synthetic efforts to develop even more potent antiplasmodial chromenes/chromanes.  相似文献   
16.
Malaria chemotherapy is greatly threatened by the recent emergence and spread of resistance in the Plasmodium falciparum parasite against artemisinins and their partner drugs. Therefore, it is an urgent priority to develop new antimalarials. Plasmepsin V (PMV) is regarded as a superior drug target for its essential role in protein export. In this study, we performed virtual screening based on homology modeling of PMV structure, molecular docking and pharmacophore model analysis against a library with 1,535,478 compounds, which yielded 233 hits. Their antimalarial activities were assessed amongst four non-peptidomimetic compounds that demonstrated the promising inhibition of parasite growth, with mean IC50 values of 6.67 μM, 5.10 μM, 12.55 μM and 8.31 μM. No significant affection to the viability of L929 cells was detected in these candidates. These four compounds displayed strong binding activities with the PfPMV model through H-bond, hydrophobic, halogen bond or π-π interactions in molecular docking, with binding scores under −9.0 kcal/mol. The experimental validation of molecule-protein interaction identified the binding of four compounds with multiple plasmepsins; however, only compound 47 showed interaction with plasmepsin V, which exhibited the potential to be developed as an active PfPMV inhibitor.  相似文献   
17.
A series of tetraoxane? triazine hybrids and spiro[piperidine‐4,3′‐tetraoxanes] have been synthesized, and all the compounds were screened for in vitro antimalarial activity against chloroquine‐sensitive (D6) and chloroquine‐resistant (W2) strains of Plasmodium falciparum. Most of the spiro[piperidine‐4,3′‐tetraoxanes] exhibited moderate to good antimalarial activities, and two compounds have shown good antimalarial activity with IC50 values in the range of 0.30 to 0.70 μM against both the strains with high selectivity index and no cytotoxicity towards mammalian kidney cell line.  相似文献   
18.
Asif Ali 《Tetrahedron》2010,66(24):4357-4279
We report a new and convergent strategy for the total synthesis of fully lipidated glycosylphosphatidylinositol (GPI) anchor, the major pro-inflammatory factor of malarial parasite (Plasmodium falciparum). The key features of our approach include, the access to the key glucosamine-inositol intermediate by a novel route without a priori resolution of myo-inositol, convergent assembly of the tetramannose glycan domain, flexibility for the placement of the three fatty acids in the desired order in the final steps, and the opportunity to construct GPI analogues/mimics to probe the biosynthesis, immunology and cell biology of the GPI anchor pathway in the malaria parasite.  相似文献   
19.
20.
Abstract

A polyphenolic flavonoid, Silymarin isolated from Silybum marianum is widely known for its hepatoprotective action. In the present study anti-plasmodial activity of Silymarin has been demonstrated for the first time having IC50 of 14?±?0.33?μM against the NF-54 strain of P. falciparum with high selectivity index (>100). The parasitostatic action is exerted through inhibition of β-hematin/hemozoin formation which is due to the interaction (Kd?=?3.63?±?0.9µM) of silymarin with free heme in a Stoichiometry of 1:1 Silymarin: heme complex resulting into heme-induced membrane damage in the parasite. Silymarin could hinder the glutathione and hydrogen peroxide-induced heme detoxification. Silymarin also induces apoptosis in the parasite through the elevation of caspase-3 level in a dose-dependent manner. Results from the docking studies suggest that Silymarin interacts with heme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号