首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1629篇
  免费   235篇
  国内免费   30篇
化学   1736篇
力学   8篇
综合类   6篇
数学   21篇
物理学   123篇
  2024年   1篇
  2023年   18篇
  2022年   43篇
  2021年   62篇
  2020年   97篇
  2019年   53篇
  2018年   54篇
  2017年   39篇
  2016年   84篇
  2015年   79篇
  2014年   84篇
  2013年   109篇
  2012年   101篇
  2011年   85篇
  2010年   67篇
  2009年   108篇
  2008年   100篇
  2007年   97篇
  2006年   78篇
  2005年   93篇
  2004年   97篇
  2003年   66篇
  2002年   46篇
  2001年   23篇
  2000年   18篇
  1999年   20篇
  1998年   14篇
  1997年   26篇
  1996年   15篇
  1995年   23篇
  1994年   10篇
  1993年   10篇
  1992年   6篇
  1991年   10篇
  1990年   6篇
  1989年   8篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1982年   10篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1976年   1篇
  1966年   1篇
排序方式: 共有1894条查询结果,搜索用时 62 毫秒
101.
A library of functionalized chemical probes capable of reacting with ketosynthase‐bound biosynthetic intermediates was prepared and utilized to explore in vivo polyketide diversification. Fermentation of ACP mutants of S. lasaliensis in the presence of the probes generated a range of unnatural polyketide derivatives, including novel putative lasalocid A derivatives characterized by variable aryl ketone moieties and linear polyketide chains (bearing alkyne/azide handles and fluorine) flanking the polyether scaffold. By providing direct information on microorganism tolerance and enzyme processing of unnatural malonyl‐ACP analogues, as well as on the amenability of unnatural polyketides to further structural modifications, the chemical probes constitute invaluable tools for the development of novel mutasynthesis and synthetic biology.  相似文献   
102.
Real‐time imaging of cell‐surface‐associated proteolytic enzymes is critical to better understand their performances in both physiological and pathological processes. However, most current approaches are limited by their complexity and poor membrane‐anchoring properties. Herein, we have designed and synthesized a unique small‐molecule fluorescent probe, which combines the principles of passive exogenous membrane insertion and Förster resonance energy transfer (FRET) to image cell‐surface‐localized furin‐like convertase activities. The membrane‐associated furin‐like enzymatic cleavage of the peptide probe leads to an increased fluorescence intensity which was mainly localized on the plasma membrane of the furin‐expressed cells. This small‐molecule fluorescent probe may serve as a unique and reliable reporter for real‐time visualization of endogenous cell‐surfaceassociated proteolytic furin‐like enzyme functions in live cells and tissues using one‐photon and two‐photon microscopy.  相似文献   
103.
The 6,6‐quinolone scaffold of the viridicatin‐type of fungal alkaloids are found in various quinolone alkaloids which often exhibit useful biological activities. Thus, it is of interest to identify viridicatin‐forming enzymes and understand how such alkaloids are biosynthesized. Here an Aspergillal gene cluster responsible for the biosynthesis of 4′‐methoxyviridicatin was identified. Detailed in vitro studies led to the discovery of the dioxygenase AsqJ which performs two distinct oxidations: first desaturation to form a double bond and then monooxygenation of the double bond to install an epoxide. Interestingly, the epoxidation promotes non‐enzymatic rearrangement of the 6,7‐bicyclic core of 4′‐methoxycyclopenin into the 6,6‐quinolone viridicatin scaffold to yield 4′‐methoxyviridicatin. The finding provides new insight into the biosynthesis of the viridicatin scaffold and suggests dioxygenase as a potential tool for 6,6‐quinolone synthesis by epoxidation of benzodiazepinediones.  相似文献   
104.
Presently, little is known of how the inter-organelle crosstalk impacts cancer cells owing to the lack of approaches that can manipulate inter-organelle communication in cancer cells. We found that a negatively charged, enzyme cleavable peptide (MitoFlag) enables the trafficking of histone protein H2B, a nuclear protein, to the mitochondria in cancer cells. MitoFlag interacts with the nuclear location sequence of H2B to block it from entering the nucleus. A protease on the mitochondria cleaves the Flag from the MitoFlag/H2B complex to form assemblies that retain H2B on the mitochondria and facilitate H2B entering the mitochondria. Adding NLS, replacing aspartic acid by glutamic acid residues, or changing the l - to d -aspartic acid residue on MitoFlag abolishes the trafficking of H2B into mitochondria of HeLa cells. As the first example of the enzyme-instructed self-assembly of a synthetic peptide for trafficking endogenous proteins, this work provides insights for understanding and manipulating inter-organelle communication in cells.  相似文献   
105.
The dinuclear copper enzyme, tyrosinase, activates O2 to form a (μ-η22-peroxido)dicopper(II) species, which hydroxylates phenols to catechols. However, the exact mechanism of phenolase reaction in the catalytic site of tyrosinase is still under debate. We herein report the near atomic resolution X-ray crystal structures of the active tyrosinases with substrate l -tyrosine. At their catalytic sites, CuA moved toward l -tyrosine (CuA1 → CuA2), whose phenol oxygen directly coordinates to CuA2, involving the movement of CuB (CuB1 → CuB2). The crystal structures and spectroscopic analyses of the dioxygen-bound tyrosinases demonstrated that the peroxide ligand rotated, spontaneously weakening its O−O bond. Thus, the copper migration induced by the substrate-binding is accompanied by rearrangement of the bound peroxide species so as to provide one of the peroxide oxygen atoms with access to the phenol substrate's ϵ carbon atom.  相似文献   
106.
Flax-PP based thermally bonded roving (TBR) has a unique structure where the flax fibres remain twist-free and fully aligned along the roving axis. The present study describes an experimental investigation on the low velocity impact (LVI) behaviour of the TBR based woven fabric composites and compares the same with plain woven glass fabric reinforced PP composites (GRPC). Two different fabric architectures namely plain woven (PW) and unidirectional (UD) are fabricated using flax/PP based TBR. These TBR based woven fabrics and the glass fabric/PP sheets are consolidated in a compression moulding machine and the resultant composite-laminates are tested for their LVI behaviour. The impact test results revealed that the glass/PP composites absorb more energy and exhibit a higher peak load than both TBR based PW and UD fabric composites. However, the specific load and energy of all flax/PP composites are higher than the glass/PP composite. The damage tolerance of all composite laminates are evaluated by comparing their flexural strength before and after the impact. It is observed that the proportionate loss in flexural strength due to impact thrust is larger in case of glass/PP composites than all flax-PP composites.  相似文献   
107.
The relationship between protein structure and function is one of the greatest puzzles within biochemistry. De novo metalloprotein design is a way to wipe the board clean and determine what is required to build in function from the ground up in an unrelated structure. This Review focuses on protein design efforts to create de novo metalloproteins within alpha‐helical scaffolds. Examples of successful designs include those with carbonic anhydrase or nitrite reductase activity by incorporating a ZnHis3 or CuHis3 site, or that recapitulate the spectroscopic properties of unique electron‐transfer sites in cupredoxins (CuHis2Cys) or rubredoxins (FeCys4). This work showcases the versatility of alpha helices as scaffolds for metalloprotein design and the progress that is possible through careful rational design. Our studies cover the invariance of carbonic anhydrase activity with different site positions and scaffolds, refinement of our cupredoxin models, and enhancement of nitrite reductase activity up to 1000‐fold.  相似文献   
108.
Adenosylhopane is a crucial intermediate in the biosynthesis of bacteriohopanepolyols, which are widespread prokaryotic membrane lipids. Herein, it is demonstrated that reconstituted HpnH, a putative radical S‐adenosyl‐l ‐methionine (SAM) enzyme, commonly encoded in the hopanoid biosynthetic gene cluster, converts diploptene into adenosylhopane in the presence of SAM, flavodoxin, flavodoxin reductase, and NADPH. NMR spectra of the enzymatic reaction product were identical to those of synthetic (22R)‐adenosylhopane, indicating that HpnH catalyzes stereoselective C?C formation between C29 of diploptene and C5′ of 5′‐deoxyadenosine. Further, the HpnH reaction in D2O‐containing buffer revealed that a D atom was incorporated at the C22 position of adenosylhopane. Based on these results, we propose a radical addition reaction mechanism catalyzed by HpnH for the formation of the C35 bacteriohopane skeleton.  相似文献   
109.
Sulfur‐based homolytic substitution (SH reaction) plays an important role in synthetic chemistry, yet whether such a reaction could occur on the positively charged sulfonium compounds remains unknown. In the study of the anaerobic coproporphyrinogen III oxidase HemN, a radical S‐adenosyl‐l ‐methionine (SAM) enzyme involved in heme biosynthesis, we observed the production of di‐(5′‐deoxyadenosyl)methylsulfonium, which supports a deoxyadenosyl (dAdo) radical‐mediated SH reaction on the sulfonium center of SAM. The sulfonium‐based SH reactions were then investigated in detail by density functional theory calculations and model reactions, which showed that this type of reactions is thermodynamically favorable and kinetically competent. These findings represent the first report of sulfonium‐based SH reactions, which could be useful in synthetic chemistry. Our study also demonstrates the remarkable catalytic promiscuity of the radical SAM superfamily enzymes.  相似文献   
110.
Trichomoniasis, is the most prevalent non-viral sexually transmitted disease worldwide. Although metronidazole (MDZ) is the recommended treatment, several strains of the parasite are resistant to MDZ, and new treatments are required. Curcumin (CUR) is a polyphenol with anti-inflammatory, antioxidant and antiparasitic properties. In this study, we evaluated the effects of CUR on two biochemical targets: on proteolytic activity and hydrogenosomal metabolism in Trichomonas vaginalis. We also investigated the role of CUR on pro-inflammatory responses induced in RAW 264.7 phagocytic cells by parasite proteinases on pro-inflammatory mediators such as the nitric oxide (NO), tumor necrosis factor α (TNFα), interleukin-1beta (IL-1β), chaperone heat shock protein 70 (Hsp70) and glucocorticoid receptor (mGR). CUR inhibited the growth of T. vaginalis trophozoites, with an IC50 value between 117 ± 7 μM and 173 ± 15 μM, depending on the culture phase. CUR increased pyruvate:ferredoxin oxidoreductase (PfoD), hydrogenosomal enzyme expression and inhibited the proteolytic activity of parasite proteinases. CUR also inhibited NO production and decreased the expression of pro-inflammatory mediators in macrophages. The findings demonstrate the potential usefulness of CUR as an antiparasitic and anti-inflammatory treatment for trichomoniasis. It could be used to control the disease and mitigate the associated immunopathogenic effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号