首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   0篇
化学   302篇
  2024年   1篇
  2020年   36篇
  2019年   87篇
  2018年   28篇
  2017年   59篇
  2016年   19篇
  2015年   16篇
  2014年   11篇
  2013年   4篇
  2012年   18篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2001年   2篇
排序方式: 共有302条查询结果,搜索用时 15 毫秒
41.
42.
(Hetero)arylamines constitute some of the most prevalent functional molecules, especially as pharmaceuticals. However, structurally complex aromatics currently cannot be converted into arylamines, so instead, each product isomer must be assembled through a multistep synthesis from simpler building blocks. Herein, we describe a late‐stage aryl C?H amination reaction for the synthesis of complex primary arylamines that other reactions cannot access directly. We show and rationalize through a mechanistic analysis the reasons for the wide substrate scope and the constitutional diversity of the reaction, which gives access to molecules that would not have been readily available otherwise.  相似文献   
43.
Difluoromethylation is a straightforward and widely applied strategy used to incorporate HCF2 into organic molecules. In contrast, cyanation reagents are typically volatile or highly toxic, or they require harsh reaction conditions. Incorporation of both CN and HCF2 into organic molecules, such as alkenes, is a worthwhile but challenging task. A method for photocatalyzed cyanodifluoromethylation of alkenes has been developed, which employs a Ph3P+CF2CO2?/NaNH2 (or NH3) reagent system. Ph3P+CF2CO2? functions as both the HCF2 and CN carbon source. A cyanide anion is generated in situ under mild conditions, thereby avoiding the use of toxic cyanation reagents. The photocatalytic method permits cyanodifluoromethylation of a range of alkenes under mild room temperature conditions. The CN group within the products may be further derivatized by standard methods.  相似文献   
44.
The charge transfer between hydrogen evolution photocatalysts (HEPs) and oxygen evolution photocatalysts (OEPs) is the rate‐determining step that controls the overall performance of a Z‐scheme water‐splitting system. Here, we carefully design reduced graphene oxide (RGO) nanosheets for use as solid‐state mediators to accelerate the charge carrier transfer between HEPs (e.g., polymeric carbon nitride (PCN)) and OEPs (e.g., Fe2O3), thus achieving efficient overall water splitting. The important role of RGO could also be further proven in other PCN‐based Z‐systems (BiVO4/RGO/PCN and WO3/RGO/PCN), illustrating the universality of this strategy.  相似文献   
45.
While titanium‐based metal–organic frameworks (MOFs) have been widely studied for their (photo)catalytic potential, only a few TiIV MOFs have been reported owing to the high reactivity of the employed titanium precursors. The synthesis of COK‐47 is now presented, the first Ti carboxylate MOF based on sheets of TiIVO6 octahedra, which can be synthesized with a range of different linkers. COK‐47 can be synthesized as an inherently defective nanoparticulate material, rendering it a highly efficient catalyst for the oxidation of thiophenes. Its structure was determined by continuous rotation electron diffraction and studied in depth by X‐ray total scattering, EXAFS, and solid‐state NMR. Furthermore, its photoactivity was investigated by electron paramagnetic resonance and demonstrated by catalytic photodegradation of rhodamine 6G.  相似文献   
46.
Oxygen vacancy (Vo) on transition metal oxides plays a crucial role in determining their chemical/physical properties. Conversely, the capability to directly detect the changing process of oxygen vacancies (Vos) will be important to realize their full potentials in the related fields. Herein, with a novel synchronous illumination X‐ray photoelectron spectroscopy (SI‐XPS) technique, we found that the surface Vos (surf‐Vos) exhibit a strong selectivity for binding with the water molecules, and sequentially capture an oxygen atom to achieve the anisotropic self‐healing of surface lattice oxygen. After this self‐healing process, the survived subsurface Vos (sub‐Vos) promote the charge excitation from Ti to O atoms due to the enriched electron located on low‐coordinated Ti sites. However, the excessive sub‐Vos would block the charge separation and transfer to TiO2 surfaces resulted from the destroyed atomic structures. These findings open a new pathway to explore the dynamic changes of Vos and their roles on catalytic properties, not only in metal oxides, but in crystalline materials more generally.  相似文献   
47.
The design and synthesis of uranium sorbent materials with high uptake efficiency, capacity and selectivity, as well as excellent hydrolytic stability and radiation resistance remains a challenge. Herein, a polyoxometalate (POM)–organic framework material ( SCU‐19 ) with a rare inclined polycatenation structure was designed, synthesized through a solvothermal method, and tested for uranium separation. Under dark conditions, SCU‐19 can efficiently capture uranium through ligand complexation using its exposed oxo atoms and partial chemical reduction from UVI to UIV by the low‐valent Mo atoms in the POM. An additional UVI photocatalytic reduction mechanism can occur under visible light irradiation, leading to a higher uranium removal without saturation and faster sorption kinetics. SCU‐19 is the only uranium sorbent material with three distinct sorption mechanisms, as further demonstrated by X‐ray photoelectron spectroscopy (XPS) and X‐ray absorption near edge structure (XANES) analysis.  相似文献   
48.
Prolonged (weeks) UV/Vis irradiation under Ar of UiO‐66(Zr), UiO66 Zr‐NO2, MIL101 Fe, MIL125 Ti‐NH2, MIL101 Cr and MIL101 Cr(Pt) shows that these MOFs undergo photodecarboxylation of benzenedicarboxylate (BDC) linker in a significant percentage depending on the structure and composition of the material. Routine characterization techniques such as XRD, UV/Vis spectroscopy and TGA fail to detect changes in the material, although porosity and surface area change upon irradiation of powders. In contrast to BCD‐containing MOFs, zeolitic imidazolate ZIF‐8 does not evolve CO2 or any other gas upon irradiation.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号