首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15592篇
  免费   1391篇
  国内免费   1084篇
化学   16559篇
晶体学   203篇
力学   23篇
综合类   38篇
数学   155篇
物理学   1089篇
  2024年   14篇
  2023年   162篇
  2022年   308篇
  2021年   409篇
  2020年   584篇
  2019年   462篇
  2018年   402篇
  2017年   377篇
  2016年   575篇
  2015年   420篇
  2014年   500篇
  2013年   1068篇
  2012年   1514篇
  2011年   651篇
  2010年   588篇
  2009年   772篇
  2008年   855篇
  2007年   1017篇
  2006年   805篇
  2005年   768篇
  2004年   725篇
  2003年   618篇
  2002年   541篇
  2001年   430篇
  2000年   408篇
  1999年   402篇
  1998年   335篇
  1997年   336篇
  1996年   350篇
  1995年   364篇
  1994年   244篇
  1993年   215篇
  1992年   188篇
  1991年   127篇
  1990年   79篇
  1989年   66篇
  1988年   65篇
  1987年   52篇
  1986年   41篇
  1985年   33篇
  1984年   36篇
  1983年   19篇
  1982年   32篇
  1981年   16篇
  1980年   19篇
  1979年   13篇
  1978年   8篇
  1977年   10篇
  1974年   6篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
Summary. The formation equilibria for the binary complexes of CoII, NiII, CuII, ZnII, CdII, MnII, PbII, ThIV, UO2II, and CeIII with tricine and for the ternary complexes involving some -amino acids (glycine, -alanine, proline, serine, asparagine, and aspartic acid) were investigated using pH-metric technique. The formation of binary and ternary complexes was inferred from the pH-metric titration curves. It was deduced that tricine acts as a primary ligand in the ternary complexes involving the monocarboxylic amino acids (glycine, -alanine, proline, serine, and asparagine), whereas it behaves as a secondary ligand in the ternary systems containing the dicarboxylic aspartic acid. The ternary complex formation was found to take place in a stepwise manner. The stability constants of the complexes formed in aqueous solutions were determined potentiometrically under the experimental conditions (t=25°C, I=0.1moldm–3 NaNO3). The order of stability of the ternary complexes in terms of the nature of the amino acids is investigated and discussed. The values of log K for the ternary complexes have been evaluated and discussed. Evaluation of the effects of ionic strength and temperature of the medium on the stability of the ternary system MII-tricine--alanine (MII=CoII, NiII, and CuII) has been studied. The thermodynamic parameters were calculated and discussed.  相似文献   
162.
In this review anti-metatype antibodies are described invoking new principles in immunoassay development. Anti-metatype antibodies are immunological reagents specific for the conformation of the liganded antibody active site which do not interact with bound ligand or unliganded antibody. Relationships between anti-metatype antibody reactivity and the ligand-induced conformational state of monoclonal antibodies are reviewed with emphasis on the fluorescein hapten as a small molecule model system. One characteristic result of the interaction of anti-metatype antibodies with liganded antibodies is a significant delay in the dissociation rate (k2) of the ligand bound within the primary immune complex. The latter is an important consideration for assay development. Polyclonal and monoclonal anti-metatype antibody reagents are characterized in terms of their differential effects on the ligand dissociation rate. Anti-metatype antibody reactivity is further discussed in terms of protein-protein specificity patterns and relative interactions with idiotype-family members, structural derivatives, and site-specific mutants. Incorporation of principles inherent in the anti-metatype concept and their application to assay development are summarized.Abbreviations D2O deuterium oxide - Fab 50 kd antibody fragment containing VHCH1 + VLCL domains - FITC(I) fluorescein isothiocyanate (isomer I) - Fv 26 kd fragment of the antibody molecule containing the variable domains of the H and L chains - Ig immunoglobulin - IgG immunoglobulin G with a mol. wt. of 150 kd. - IgM immunoglobulin M with a mol. wt. of 106d - Id idiotype - Ka antibody affinity (k1/k2) in M–1 - k1 second order rate of ligand association in M–1s–1 - k2 first order rate of ligand dissociation in s–1 - KD dissociation constant or the reciprocal of the affinity constant (1/Ka) - Mab monoclonal antibody - Met metatype - NMR nuclear magnetic resonance - SCA single chain Fv derivative containing a synthetic linker between the two variable domains - VH variable domain of the antibody H chain - VL variable domain of the antibody L chain  相似文献   
163.
Summary Reactions oftrans-[M(N2)2(dppe)2] (A;M=Mo, W;dppe=Ph 2PCH2CH2PPh 2) with ethyldiazoacetate, N2CHCOOEt, yield the bisdiazoalkane speciestrans-[M(N2CHCOOEt)2(dppe)2], upon simple replacement of the dinitrogen ligand by ethyldiazoacetate. However, diazomethane, N2CH2, reacts withA with loss of N2 to give products which we tentatively formulate as containing methylene ligands,trans-[M(CH2)2(dppe)2].
Herstellung von Bisdiazoalkan- und ähnlichen Komplexen aus den Reaktionen von Diazoverbindungen mit Distickstoffkomplexen des Typstrans-[M(N2)2(Ph 2PCH2CH2PPh 2)2] mitM=Mo oder W
Zusammenfassung Die Reaktion vontrans-[M(N2)2(dppe)2] (A:dppe=Ph 2PCH2CH2PPh 2 undM=Mo oder W) mit Ethyldiazoacetat, N2CHCOOEt, ergab nach einfachem Austausch des Distickstoffliganden mit Ethyldiazoacetat die Bisdiazoalkanetrans-[M(N2CHCOOEt)2(dppe)2]. Diazomethan (N2CH2) hingegen reagierte mitA unter Verlust von N2 zu Produkten, die tentativ alstrans-[M(CH2)2(dppe)2] mit Methylenliganden formuliert wurden.
  相似文献   
164.
The magnetic interactions in a new series of isostructural imino nitroxide radical lanthanide(III) complexes, [Ln(hfac)3(IM2py)] (Ln = Gd–Yb: IM2py = 2-(2′-pyridyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazoline-1-oxy; hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), are examined by considering the intrinsic paramagnetic contribution of the Ln(III) ion from the corresponding [Ln(hfac)3(pybzim)] with a diamagnetic pybzim(2-(2-pyridyl)benzimidazole) ligand; the Ln(III)–IM2py interaction being antiferromagnetic for the 4f7 to 4f13 Ln(III) complexes and negligibly small for the other complexes. This series is the first example reverse to the previous cases for the series of Ln–Cu or Ln–aminoxyl(NIT) radical (4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazoline-3-oxide-1-oxy) complexes, other than only a few examples of semiquinone Ln complexes. This reverse nature of the magnetic interaction, as compared with the NIT complexes, validates the empirical approach by O. Kahn et al. [Inorg. Chem. 38 (1999) 3692; J. Am. Chem. Soc. 122 (2000) 3413] in the spin-coupled systems for a series of Ln(III) complexes.  相似文献   
165.
Our recent extensive research on Lewis acid catalysts with a weak base for the cationic polymerization of vinyl ethers led to unprecedented living reaction systems: fast living polymerization within 1–3 s; a wide choice of metal halides containing Al, Sn, Fe, Ti, Zr, Hf, Zn, Ga, In, Si, Ge, and Bi; and heterogeneously catalyzed living polymerization with Fe2O3. The use of added bases for the stabilization of the propagating carbocation and the appropriate selection of Lewis acid catalysts were crucial to the success of such new types of living polymerizations. In addition, the base‐stabilized living polymerization allowed the quantitative synthesis of star‐shaped polymers with a narrow molecular weight distribution via polymer‐linking reactions and the precision synthesis and self‐assembly of stimuli‐responsive block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1801–1813, 2007.  相似文献   
166.
The Density functional theory has been applied to characterize the structural features of Mo(1,2)-NH(3),-C(2)H(4), and -C(2)H(2) compounds. Coordination modes, geometrical structures, and binding energies have been calculated for several spin multiplets. It has been shown that in contrast to the conserved spin cases (Mo(1,2)-NH(3)), the interaction between Mo (or Mo(2)) and C(2)H(4) (or C(2)H(2)) are the low-spin (Mo-C(2)H(4) and -C(2)H(2)) and high-spin (Mo(2)-C(2)H(4) and -C(2)H(2)) complexes. In the ground state of Mo(1,2)-C(2)H(4) and -C(2)H(2), the metal-center always reacts with the C-C center. The spontaneous formation of the global minima is found to be possible due to the crossing between the potential energy surfaces (ground and excited states with respect to the metallic center). The bonding characterization has been performed using the topological analysis of the Electron Localization Function. It has been shown that the most stable electronic structure for a pi-acceptor ligand correlates with a maximum charge transfer from the metal center to the C-C bond of the unsaturated hydrocarbons, resulting in the formation of two new basins located on the carbon atoms (away from hydrogen atoms) and the reduction of the number of attractors of the C-C basin. The interaction between Mo(1,2) and C(2)H(4) (or C(2)H(2)) should be considered as a chemical reaction, which causes the multiplicity change. Contrarily, there is no charge transfer between Mo(1,2) and NH(3), and the partners are bound by an electrostatic interaction.  相似文献   
167.
Three new hetero‐bischelated rhodium (III) complexes of cis‐[Rh(PA)(L)Cl2]Cl (where PA = phenylpyridin‐2‐ylmethylene‐amine; L = 2,2′‐bipyridine, 2,2′‐dipyridylamine and 1,10‐phenanthroline) have been successfully prepared and characterized. Each complex shows high intensity bands in the UV region, and these are assigned to spin‐allowed π‐π* transitions. The medium‐intensity absorption band profile in the lower energy region can be explained by convolution of spin‐allowed CT and d‐d* transitions. The emission spectra at low temperature (77 K) of these complexes in EtOH/MeOH (4:1 v/v) are virtually identical. They all exhibit a broad, symmetric, and structureless red emission with a microsecond lifetime and hence are assigned as the d‐d* phosphorescence.  相似文献   
168.
Alternative Ligands. XXIII Rhodium(I) Complexes with Donor/Acceptor Ligands of the Type (Me2PCH2CH2)2SiX2 and (2-Me2PC6H4)SiXMe2 (X = F, Cl) Donor/acceptor ligands of the type (Me2PCH2CH2)2SiX2 and (2-Me2PC6H4)SiXMe2 (X = F, Cl) react with [Rh(CO)2Cl]2 (1) to give the mononuclear complexes RhCl(CO)(Me2PCH2CH2)2SiX2 [X = F( 4 ), Cl ( 5 )] and RhCl(CO)[2-Me2PC6H4)SixMe2]2 [X = F ( 8 ), Cl ( 9 )], respectively. In case of the ligands (Me2PCH2CH2)2SiCl2 ( 3 ) and (2-Me2PC6H6)SiClMe2 ( 7 ) the Rh(I) complexes formed in the first step partly undergo oxidative addition reactions of SiCl bonds yielding rhodium(III) compounds of low solubility. Only for 8 the coordination shifts Δδ = δ(complex)?δ(ligand) and coupling constants give some indication to possible Rh→Si interactions. However, the molecular structure of 8 determined by X-ray diffraction does not show RhSi or RhF bonding contacts. The new compounds were characterized by analytical (C, H) and spectroscopic investigations (MS, IR,-NMR).  相似文献   
169.
Aggregated aromatic molecule--cyclodextrin-precipitant complexes exhibit long-lived phosphorescence at room temperature in water after the chemical binding of oxygen. The temperature dependences of the phosphorescence lifetimes of naphthalene-h8, naphthalene-de, and phenanthrene in the aggregates were measured. For example, the phosphorescence lifetimes of naphthalene-d8 aggregated with -cyclodextrin and cyclohexane are equal to 25.1, 17.6, and 6.8 s at 77, 276, and 347 K, respectively, and that of phenanthrene aggregated with isooctane and -cyclodextrin are 3.24, 3.06, and 1.26 s at 268, 274, and 335 K, respectively. The temperature dependences of the phosphorescence lifetimes at room temperature are determined by the rate constants of the radiative and nonradiative transitions from the triplet state of an aromatic molecule.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2225–2228, September, 1996.  相似文献   
170.
Summary High-performance liquid chromatography and ultraviolet spectroscopy methods were applied to the studies on the influence of temperature on the complexation of β-cyclodextrin with naphthalene and its derivatives. The strong nonlinearity of Van't Hoff plots suggests, that the retention mechanism of hydrocarbons investigated might be different in high and low temperature region. The total lack of correlation (r=−0.230) between chromatographic data (capacity factors ratio:k PAH/k PAH×CD) and spectrophotometric data (ΔA) at high temperature (60°) as well as a significant correlation (r=0.922) at subambient temperature (15°C) suggest, that the inclusion mechanism starts to be important at low temperature region and the predominant mechanism for chromatographic retention is the formation of an inclusion complexes in the mobile phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号