首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   6篇
化学   315篇
物理学   12篇
  2023年   4篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   5篇
  2013年   16篇
  2012年   22篇
  2011年   28篇
  2010年   28篇
  2009年   28篇
  2008年   17篇
  2007年   39篇
  2006年   17篇
  2005年   23篇
  2004年   15篇
  2003年   13篇
  2002年   10篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   7篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   9篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
排序方式: 共有327条查询结果,搜索用时 15 毫秒
61.
Amphetamine and methamphetamine are emerging contaminants—those for which no regulations currently require monitoring or public reporting of their presence in our water supply. In this research, a protocol for weak cation‐exchange (WCX) SPE coupled with LC‐MS/MS was developed for determination of emerging contaminants amphetamine and methamphetamine in a complex wastewater matrix. Gradient LC parameters were adjusted to yield baseline separation of methamphetamine from other contaminants. Methamphetamine‐D5 was used as the internal standard (IS) to compensate for sample loss during SPE and for signal loss during MS (matrix effects). Recoveries were 102.1 ± 7.9% and 99.4 ± 4.0% for amphetamine and methamphetamine, respectively, using WCX sorbent. Notably, methamphetamine was determined to be present in wastewater influent at each sampling date tested. Amphetamine was present in wastewater influent on two of four sampling dates. Amphetamine concentrations ranged from undetectable to 86.4 ng/L in influent, but it was undetectable in wastewater effluent. Methamphetamine was detected in influent at concentrations ranging from 27.0–60.3 ng/L. Methamphetamine concentration was reduced but incompletely removed at this facility. Although absent in one post‐UV effluent sample, concentrations of methamphetamine ranged from 10.8–14.8 ng/L.  相似文献   
62.
A simple chromatographic method is described for assaying 15 quinolones and fluoroquinolones (pipemidic acid, marbofloxacin, enoxacin, ofloxacin, norfloxacin, ciprofloxacin, danofloxacin, lomefloxacin, enrofloxacin, sarafloxacin, difloxacin, oxolinic acid, nalidixic acid, flumequine and piromidic acid), in urine and pharmaceutical samples. The determination was achieved by LC using an RP C18 analytical column. A mobile phase composed of mixtures of methanol-ACN-10 mM citrate buffer at pH 3.5 and 10 mM citrate buffer at pH 4.5, delivered under an optimum gradient program, at a flow rate of 1.5 mL/min, allows to accomplish the chromatographic separation in 26 min. For detection, diode-array UV-Vis at 280 nm and fluorescence detection set at excitation wavelength/emission wavelength: 280/450, 280/ 495, 280/405 and 320/360 nm were used. Detection and quantification limits were between 0.3-18 and 0.8-61 ng/mL, respectively. The method was validated in terms of interday (n = 6) and intraday (n = 6) precision and accuracy. The procedure was successfully applied to the analysis of human and veterinary pharmaceuticals. Also, ofloxacin was determined in human urine samples belonging to a patient undergoing treatment with this active principle, among others.  相似文献   
63.
A novel method for the non-derivatization liquid chromatographic determination of metals (potassium, aluminium, calcium and magnesium) and organic compounds (ascorbate and aspartate) was developed and validated based on evaporative light scattering detection (ELSD). Separation of calcium, magnesium and aluminium was achieved by the cation exchange column Dionex CS-14 and an aqueous TFA mobile phase according to the following time program: 0-6 min TFA 0.96 mL L−1, 6-7 min linear gradient from TFA 0.96-6.4 mL L−1. Separation of potassium, magnesium and aspartate was achieved by the lipophilic C18 Waters Spherisorb column and isocratic aqueous 0.2 mL L−1 TFA mobile phase. Separation of sodium, magnesium, ascorbate and citrate was also achieved by the C18 analytical column, according to the following elution program: 0-2.5 min aqueous nonafluoropentanoic acid (NFPA) 0.5 mL L−1; 2.5-3.5 min linear gradient from 0.5 mL L−1 NFPA to 1.0 mL L−1 TFA. In all cases, evaporation temperature was 70 °C, pressure of the nebulizing gas (nitrogen) 3.5 bar, gain 11 and the flow rate 1.0 mL min−1. Resolution among calcium and magnesium was 1.8, while for all other separations was ≥3.2. Double logarithmic calibration curves were obtained within various ranges from 3-24 to 34-132 μg mL−1, and with good correlation (r > 0.996). Asymmetry factor ranged from 0.9 to 1.9 and limit of detection from 1.3 (magnesium) to 17 μg mL−1 (ascorbate).The developed method was applied for the assay of potassium, magnesium, calcium, aluminium, aspartate and ascorbate in pharmaceuticals and food-supplements. The accuracy of the method was evaluated using spiked samples (%recovery 95-105%, %R.S.D. < 2) and the absence of constant or proportional errors was confirmed by dilution experiments.  相似文献   
64.
65.
An analytical procedure involving solid-phase extraction (SPE) and gas chromatography–mass spectrometry (GC–MS) has been developed for determination of pharmaceutical compounds (aspirin, caffeine, carbamazepine, diclofenac, ketoprofen, naproxen, ibuprofen, clofibrate, clofibric acid, and gemfibrozil) in a variety of aqueous samples (wastewater and surface water). After filtration, samples were extracted and concentrated using C18 or HLB cartridges, depending on the type of compound. Sample storage conditions were checked and optimized to ensure preservation of the pharmaceutical substance, taking into consideration environmental sampling conditions. For most of the pharmaceuticals monitored, recovery was in the range 53 to 99% and the variability was below 15% for the complete procedure, with limits of detection ranging from 0.4 to 2.5 ng L−1, depending on the compound. The methods were successfully applied to monitoring of pharmaceutical contamination of the Seine estuary. Concentrations varied from several dozens of nanograms per liter for surface waters to several hundreds of nanograms per liter for wastewaters.  相似文献   
66.
A new sensitive and selective preconcentration-fluorimetric method for determination of terazosin based on its native fluorescence was developed. The analyte, initially present in aqueous matrix, was treated with an extractive non-ionic surfactant solution and separated by the clouding phenomenon. The optimum analytical conditions for terazosin assay were established. Under these conditions, linear calibration curves were obtained over the range of 1 × 10−5 to 7.0 μg mL−1 with detection and quantification limits of 1.11 × 10−5 and 3.7 × 10−5 μg mL−1, respectively. Additionally, the binding constant (KB) for the terazosin-PONPE 7.5 system was determined given a value of 1028 L mol−1. The developed coupled methodology, which thoroughly satisfies the typical requirements for pharmaceutical control processes, was proved to be appropriate for monitoring terazosin in actual pharmaceutical formulations and biological fluid sample. The results were validated by recovery test and by comparison with other reported methods, being highly satisfactory.  相似文献   
67.
Sample preparation in analysis of pharmaceuticals   总被引:1,自引:0,他引:1  
Sample preparation is a very important and essential step in environmental analysis. This article presents an overview of extraction methods for environmental samples, focusing especially on pharmaceuticals as there is great concern about them as pollutants.  相似文献   
68.
Summary The novel use of capillary electrophoresis to the important and developing area of monitoring possible drug residues on pharmaceutical manufacturing equipment is reported. The CE method is applicable to a wide range of basic drugs with sensitivity as low as 25ng/ml (equivalent to 8×10–8 M). This sensitivity is equivalent to that obtainable for HPLC for the drugs tested and is obtained by employing a combination of a wider bore capillary with low wavelength UV detection. Preliminary evaluation of the method performance shows acceptable precision, linearity, sensitivity and accuracy. Features of the method compared to HPLC include simplicity, ease of method transfer, reductions in analysis set-up time, and reduced costs of solvents and columns.  相似文献   
69.
Among the various compounds considered as emerging pollutants, alkylphenolic surfactants, steroid sex hormones, and pharmaceuticals are of particular concern, both because of the volume of these substances used and because of their activity as endocrine disruptors or as causative agents of bacterial resistance, as is the case of antibiotics. Today, the technique of choice for analysis of these groups of substances is liquid-chromatography coupled to mass spectrometry (LC–MS) and tandem mass spectrometry (LC–MS–MS). In the last decades, this technique has experienced an impressive progress that has made possible the analysis of many environmental pollutants in a faster, more convenient, and more sensitive way, and, in some cases, the analysis of compounds that could not be determined before. This article reviews the LC–MS and LC–MS–MS methods published so far for the determination of alkylphenolic surfactants, steroid sex hormones and drugs in the aquatic environment. Practical considerations with regards to the analysis of these groups of substances by using different mass spectrometers (single quadrupole, ion trap and triple quadrupole instruments, etc.), interfaces and ionization and monitoring modes, are presented. Sample preparation aspects, with special focus on the application of advanced techniques, such as immunosorbents, restricted access materials and molecular imprinted materials, for extraction/purification of aquatic environmental samples and extracts are also discussed.  相似文献   
70.
A semiautomatic extraction-fluorimetric method for the determination of tricyclic antidepressant drugs (TCAs) based in the formation of ion pairs with 9,10-dimethoxyanthracene-2-sulphonate (DMAS) has been developed. The aqueous solutions of the TCAs (imipramine, desipramine, amitriptyline, nortriptyline, clomipramine or doxepine) are injected into a carrier composed by DMAS in an acid medium and the ion pair formed is extracted into dichloromethane where the fluorescence is measured. An experimental design (Central Composite Design) together with the Response Surface Methodology has been used to find the optimal instrumental FIA and chemical variables. We have considered as the response function the product of the peak height by the sampling frequency. The calibration curves were linear over the working range (0.25-3.00 mg L−1). The limits of detection were lower than 0.30 mg L−1. The method has been satisfactorily applied to the determination of imipramine, amitriptyline, clomipramine and doxepin in pharmaceutical preparations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号