首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23468篇
  免费   2071篇
  国内免费   4924篇
化学   26878篇
晶体学   144篇
力学   282篇
综合类   116篇
数学   435篇
物理学   2608篇
  2024年   193篇
  2023年   388篇
  2022年   821篇
  2021年   1034篇
  2020年   1461篇
  2019年   995篇
  2018年   1032篇
  2017年   939篇
  2016年   1014篇
  2015年   957篇
  2014年   1439篇
  2013年   2237篇
  2012年   1271篇
  2011年   1550篇
  2010年   1172篇
  2009年   1286篇
  2008年   1369篇
  2007年   1496篇
  2006年   1385篇
  2005年   1296篇
  2004年   1272篇
  2003年   972篇
  2002年   581篇
  2001年   478篇
  2000年   496篇
  1999年   418篇
  1998年   374篇
  1997年   332篇
  1996年   302篇
  1995年   295篇
  1994年   248篇
  1993年   192篇
  1992年   189篇
  1991年   140篇
  1990年   110篇
  1989年   102篇
  1988年   82篇
  1987年   53篇
  1986年   48篇
  1985年   53篇
  1984年   48篇
  1983年   26篇
  1982年   36篇
  1981年   35篇
  1980年   26篇
  1979年   24篇
  1978年   27篇
  1977年   29篇
  1976年   36篇
  1974年   38篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Developing new transition metal-catalyzed asymmetric cycloadditions for the synthesis of five-membered carbocycles (FMCs) is a research frontier in reaction development due to the ubiquitous presence of chiral FMCs in various functional molecules. Reported here is our discovery of a highly enantioselective intramolecular [3+2] cycloaddition of yne-alkylidenecyclopropanes (yne-ACPs) to bicyclo[3.3.0]octadiene and bicyclo[4.3.0]nonadiene molecules using a cheap Co catalyst and commercially available chiral ligand (S)-Xyl-BINAP. This reaction avoids the use of precious Pd and Rh catalysts, which are usually the choices for [3+2] reactions with ACPs. The enantiomeric excess in the present reaction can be up to 92 %. Cationic cobalt(I) species was suggested by experiments as the catalytic species. DFT calculations showed that this [3+2] reaction starts with oxidative cyclometallation of alkyne and ACP, followed by ring opening of the cyclopropyl (CP) group and reductive elimination to form the cycloadduct. This mechanism is different from previous [3+2] reactions of ACPs, which usually start from CP cleavage, not from oxidative cyclization.  相似文献   
52.
The nanoparticle-based electrocatalysts’ performance is directly related to their working conditions. In general, a number of nanoparticles are uncontrollably fixed on a millimetre-sized electrode for electrochemical measurements. However, it is hard to reveal the maximum electrocatalytic activity owing to the aggregation and detachment of nanoparticles on the electrode surface. To solve this problem, here, we take the hydrogen evolution reaction (HER) catalyzed by palladium nanoparticles (Pd NPs) as a model system to track the electrocatalytic activity of single Pd NPs by stochastic collision electrochemistry and ensemble electrochemistry, respectively. Compared with the nanoparticle fixed working condition, Pd NPs in the nanoparticle diffused working condition results in a 2–5 orders magnitude enhancement of electrocatalytic activity for HER at various bias potential. Stochastic collision electrochemistry with high temporal resolution gives further insights into the accurate study of NPs’ electrocatalytic performance, enabling to dramatically enhance electrocatalytic efficiency.  相似文献   
53.
The optimization of structure and composition is essential to improve the performance of catalysts. Herein, mesoporous nanoparticles assembled PdNi/Ni nanotubes (mPdNi/Ni NTs) are successfully fabricated using nickel nanowires as sacrificial template. The combination of nanotubular structure with mesoporous nanoparticle morphology can provide facilitated transfer channels and sufficient active sites, allowing the full contact and reaction between catalysts and reactants. Therefore, the synthesized mPdNi/Ni NTs exhibite superior ethanol oxidation performance to mesoporous Pd nanotubes and commercial Pd black. This study proposes a rational strategy for the development of nanoparticle assembled nanotubes with surface mesoporous morphology, which can greatly improve catalytic performance in various electrocatalytic fields.  相似文献   
54.
In recent years,the research of nitrogen reduction reaction(NRR) under ambient conditions has attracted wide attention for their relatively low energy consumption,in which rational design of electrocatalysts is the key to achieve high-performance NRR.Metal-organic frameworks(MOFs),as a new kind of porous material,have been intensively studied in the past few decades owing to not only their structural versatility and tunability but also intrinsic porosity.Due to their structural features,MOFs als...  相似文献   
55.
用原子荧光法测定食品中总砷的经验介绍   总被引:1,自引:0,他引:1  
由于氢化物原子荧光法具有方法简单、精密度好、灵敏度高、线性范围宽等优点,已在土壤、食品、化妆品等砷含量的测定中得到广泛应用.对该法测定食品总砷过程中还原剂与砷标准的反应时间与荧光强度值之间的关系进行了探讨,得出其最佳反应时间.  相似文献   
56.
Synthesis of N,N′-Di-Boc-2H-isoindole-2-carboxamidine, the first representative of isoindoles containing guanidine functionality, was carried out. The cycloaddition reactivity of this new Diels–Alder heterodiene was studied and the title compound was employed as a cycloaddition delivery reagent for guanidine functionality. Higher reactivity was found in comparison with the corresponding pyrrole derivative. Substitution with fluorine or guanidine functionality does not change the reactivities of isoindoles, and these findings are in good accord with computational results.  相似文献   
57.
58.
The inherent periodically arranged M−NX, M−SX and M−OX units (M are usually Fe, Co, Ni, etc.) in metal–organic frameworks (MOFs) can be promising active centers in electrocatalysis. In previous studies, MOFs were usually constructed by energy-consuming hydro- or solvo-thermal reactions. Ultrasonic synthesis is a rapid and environment-friendly technique when envisaging MOFs’ industrial applications. In addition, different synthetic pathways for MOFs may lead to difference in their microstructure, resulting in different electrocatalytic performance. Nevertheless, only a handful of MOFs were successfully prepared by ultrasonic synthesis and few were applied in electrochemical catalysis. Herein, we constructed Ni/Co-catecholates (Ni/Co-CATs) synthesized by one-step ultrasonic method (250 W, 40 KHz, 25 W/L, Ultrasonic clearing machine) and compared their performance in oxygen reduction reaction (ORR) with that of Ni/Co-CATs synthesized by hydrothermal method. Ni-CAT and Co-CAT prepared by ultrasonic showed the half-wave potential of −0.196 V and −0.116 V (vs. Ag/AgCl), respectively. The potentials were more positive than those prepared by hydro-thermal method. And they showed excellent electrochemical stability in neutral solution. The latter was only 32 mV lower than that of commercial Pt/C. The improved performance in ORR was attributed to higher specific surface area and mesopore volume as well as more structural defects generated in the ultrasonic synthesis process, which could facilitate their exposure of electrocatalytic active sites and their mass transport. This work gives some perspective into cost-effective synthetic strategies of efficient MOFs-based electrocatalysts.  相似文献   
59.
With the increasing application of deep-learning-based generative models for de novo molecule design, the quantitative estimation of molecular synthetic accessibility (SA) has become a crucial factor for prioritizing the structures generated from generative models. It is also useful for helping in the prioritization of hit/lead compounds and guiding retrosynthesis analysis. In this study, based on the USPTO and Pistachio reaction datasets, a chemical reaction network was constructed for the identification of the shortest reaction paths (SRP) needed to synthesize compounds, and different SRP cut-offs were then used as the threshold to distinguish a organic compound as either an easy-to-synthesize (ES) or hard-to-synthesize (HS) class. Two synthesis accessibility models (DNN-ECFP model and graph-based CMPNN model) were built using deep learning/machine learning algorithms. Compared to other existing synthesis accessibility scoring schemes, such as SYBA, SCScore, and SAScore, our results show that CMPNN (ROC AUC: 0.791) performs better than SYBA (ROC AUC: 0.76), albeit marginally, and outperforms SAScore and SCScore. Our prediction models based on historical reaction knowledge could be a potential tool for estimating molecule SA.  相似文献   
60.
Modelling of the proline (1) catalyzed aldol reaction (with acetone 2) in the presence of an explicit molecule of dimethyl sulfoxide (DMSO) (3) has showed that 3 is a major player in the aldol reaction as it plays a double role. Through strong interactions with 1 and acetone 2, it leads to a significant increase of energy barriers at transition states (TS) for the lowest energy conformer 1a of proline. Just the opposite holds for the higher energy conformer 1b. Both the ‘inhibitor’ and ‘catalyst’ mode of activity of DMSO eliminates 1a as a catalyst at the very beginning of the process and promotes the chemical reactivity, hence catalytic ability of 1b. Modelling using a Molecular-Wide and Electron Density-based concept of Chemical Bonding (MOWED-CB) and the Reaction Energy Profile–Fragment Attributed Molecular System Energy Change (REP-FAMSEC) protocol has shown that, due to strong intermolecular interactions, the HN-C-COOH (of 1), CO (of 2), and SO (of 3) fragments drive a chemical change throughout the catalytic reaction. We strongly advocate exploring the pre-organization of molecules from initially formed complexes, through local minima to the best structures suited for a catalytic process. In this regard, a unique combination of MOWED-CB with REP-FAMSEC provides an invaluable insight on the potential success of a catalytic process, or reaction mechanism in general. The protocol reported herein is suitable for explaining classical reaction energy profiles computed for many synthetic processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号