排序方式: 共有79条查询结果,搜索用时 46 毫秒
41.
Junpeng Lu Alexandra Carvalho Hongwei Liu Sharon Xiaodai Lim Antonio H. CastroNeto Chorng Haur Sow 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2016,128(39):12124-12128
A high‐performance 2D photodetector based on a bilayer structure comprising a WSe2 monolayer and CH3NH3PbI3 organolead halide perovskite is reported. High performance is realized by modification of the WSe2 monolayer with laser healing and perovskite functionalization. After modification, the output of the device was three orders of magnitude better than the pristine device; the performance is superior to that of most of the 2D photodetectors based on transition‐metal‐dichalcogenides (TMDs). This result indicates that combinatory TMDs–halide perovskite hybrids can be promising building blocks in optoelectronics. 相似文献
42.
Dr. Weibin Chu Prof. Dr. Wissam A. Saidi Prof. Dr. Jin Zhao Prof. Dr. Oleg V. Prezhdo 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(16):6497-6503
Although all-inorganic metal halide perovskites (MHPs) have shown tremendous improvement, they are still inferior to the hybrid organic–inorganic MHPs in efficiency. Recently, a conceptually new β-CsPbI3 perovskite reached 18.4 % efficiency combined with good thermodynamic stability at ambient conditions. We use ab initio non-adiabatic molecular dynamics to show that native point defects in β-CsPbI3 are generally benign for nonradiative charge recombination, regardless of whether they introduce shallow or deep trap states. These results indicate that MHPs do not follow the simple models used to explain defect-mediated charge recombination in the conventional semiconductors. The strong tolerance is due to the softness of the perovskite lattice, which permits separation of electrons and holes upon defect formation, and only allows carriers to couple to the low-frequency vibrations. Both factors decrease notably the non-adiabatic coupling and slow down the dissipation of energy to heat. 相似文献
43.
Ronghuan Zhang Nicolas Dubouis Manel BenOsman Wei Yin Moulay T. Sougrati Daniel A. D. Corte Domitille Giaume Alexis Grimaud 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(14):4619-4623
Recently, IrV‐based perovskite‐like materials were proposed as oxygen evolution reaction (OER) catalysts in acidic media with promising performance. However, iridium dissolution and surface reconstruction were observed, questioning the real active sites on the surface of these catalysts. In this work, Sr2MIr(V)O6 (M=Fe, Co) and Sr2Fe0.5Ir0.5(V)O4 were explored as OER catalysts in acidic media. Their activities were observed to be roughly equal to those previously reported for La2LiIrO6 or Ba2PrIrO6. Coupling electrochemical measurements with iridium dissolution studies under chemical or electrochemical conditions, we show that the deposition of an IrOx layer on the surface of these perovskites is responsible for their OER activity. Furthermore, we experimentally reconstruct the iridium Pourbaix diagram, which will help guide future research in controlling the dissolution/precipitation equilibrium of iridium species for the design of better Ir‐based OER catalysts. 相似文献
44.
45.
46.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(15):4224-4228
Cesium‐based perovskite nanocrystals (NCs) have outstanding photophysical properties improving the performances of lighting devices. Fundamental studies on excitonic properties and hot‐carrier dynamics in perovskite NCs further suggest that these materials show higher efficiencies compared to the bulk form of perovskites. However, the relaxation rates and pathways of hot‐carriers are still being elucidated. By using ultrafast transient spectroscopy and calculating electronic band structures, we investigated the dependence of halide in Cs‐based perovskite (CsPbX3 with X=Br, I, or their mixtures) NCs on the hot‐carrier relaxation processes. All samples exhibit ultrafast (<0.6 ps) hot‐carrier relaxation dynamics with following order: CsPbBr3 (310 fs)>CsPbBr1.5I1.5 (380 fs)>CsPbI3 NC (580 fs). These result accounts for a reduced light emission efficiency of CsPbI3 NC compared to CsPbBr3 NC. 相似文献
47.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(40):12275-12279
Recently, CuI‐ and AgI‐based halide double perovskites have been proposed as promising candidates for overcoming the toxicity and instability issues inherent within the emerging Pb‐based halide perovskite absorbers. However, up to date, only AgI‐based halide double perovskites have been experimentally synthesized; there are no reports on successful synthesis of CuI‐based analogues. Here we show that, owing to the much higher energy level for the Cu 3d10 orbitals than for the Ag 4d10 orbitals, CuI atoms energetically favor 4‐fold coordination, forming [CuX4] tetrahedra (X=halogen), but not 6‐fold coordination as required for [CuX6] octahedra. In contrast, AgI atoms can have both 6‐ and 4‐fold coordinations. Our density functional theory calculations reveal that the synthesis of CuI halide double perovskites may instead lead to non‐perovskites containing [CuX4] tetrahedra, as confirmed by our material synthesis efforts. 相似文献
48.
Yong Wang Xiaomin Liu Taiyang Zhang Xingtao Wang Miao Kan Jielin Shi Yixin Zhao 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(46):16844-16849
The controllable growth of CsPbI3 perovskite thin films with desired crystal phase and morphology is crucial for the development of high efficiency inorganic perovskite solar cells (PSCs). The role of dimethylammonium iodide (DMAI) used in CsPbI3 perovskite fabrication was carefully investigated. We demonstrated that the DMAI is an effective volatile additive to manipulate the crystallization process of CsPbI3 inorganic perovskite films with different crystal phases and morphologies. The thermogravimetric analysis results indicated that the sublimation of DMAI is sensitive to moisture, and a proper atmosphere is helpful for the DMAI removal. The time‐of‐flight secondary ion mass spectrometry and nuclear magnetic resonance results confirmed that the DMAI additive would not alloy into the crystal lattice of CsPbI3 perovskite. Moreover, the DMAI residues in CsPbI3 perovskite can deteriorate the photovoltaic performance and stability. Finally, the PSCs based on phenyltrimethylammonium chloride passivated CsPbI3 inorganic perovskite achieved a record champion efficiency up to 19.03 %. 相似文献
49.
Bo Zhou Dongpeng Yan 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(42):15272-15279
Molecular solid‐state materials with long‐lived luminescence (such as thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) systems) are promising for display, sensoring, and bio‐imaging applications. However, the design of such materials that exhibit both long luminescent lifetime and high solid‐state emissive efficiency remains an open challenge. Two‐dimensional (2D) organic–metal halide perovskite materials have a high blue‐emitting quantum yield of up to 63.55 % and ultralong TADF lifetime of 103.12 ms at ambient temperature and atmosphere. Our design leverages the combined influences of a 2D space/electronic confinement effect and a modest heavy‐atom tuning strategy. Photophysical studies and calculations reveal that the enhanced quantum yield is due to the rigid laminate structure of perovskites, which can effectively inhibit the non‐radiative decay of excitons. 相似文献