首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6432篇
  免费   603篇
  国内免费   588篇
化学   4741篇
晶体学   22篇
力学   235篇
综合类   45篇
数学   70篇
物理学   2510篇
  2024年   13篇
  2023年   101篇
  2022年   203篇
  2021年   220篇
  2020年   268篇
  2019年   245篇
  2018年   180篇
  2017年   329篇
  2016年   353篇
  2015年   301篇
  2014年   400篇
  2013年   404篇
  2012年   474篇
  2011年   415篇
  2010年   311篇
  2009年   354篇
  2008年   382篇
  2007年   398篇
  2006年   326篇
  2005年   295篇
  2004年   317篇
  2003年   209篇
  2002年   180篇
  2001年   120篇
  2000年   120篇
  1999年   125篇
  1998年   114篇
  1997年   111篇
  1996年   71篇
  1995年   60篇
  1994年   42篇
  1993年   43篇
  1992年   24篇
  1991年   28篇
  1990年   25篇
  1989年   16篇
  1988年   9篇
  1987年   14篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
排序方式: 共有7623条查询结果,搜索用时 31 毫秒
971.
In this work we present an experimental technique for the estimation of the average temperature on the cutting edge of each insert in a milling tool. The experimental device used thermistors, one per insert, and a rotational collector in order to ensure the transmission of the signals between the rotating tool and the acquisition device. Each thermistor is located at a point in the tool close to the tip of each insert. The average temperature on the cutting edge of each insert is estimated from the temperature at the nearest sensor and a model expressing these two temperatures. This model is achieved from the noninteger system identification method.  相似文献   
972.
Abstract

The current review of spectroscopic studies in the glassy state concludes in this part with the consideration of wavelengths in the infrared region and below, Of all the spectral regions, the infrared is the most extensively studied, as can be readily seen from a statistical appraisal of interest, a s judged from the number of publications in the various spectral regions, given in Fig. 7 in the final section of this paper.  相似文献   
973.
In this paper, we explore the use of nanostructures for a number of fascinating applications. These applications based on nanostructures include (1) optical sensors, (2) nanopixel printing, (3) improving the resolution of imaging techniques, and (4) lithography. In the sensing field, nanostructures are exploited for advanced sensor performance, namely, the label-free and enhanced sensitivity of (1) the surface plasmon resonance sensor and (2) the extraordinary optical transmission sensor and (3) the high sensitivity and selectivity of surface-enhanced Raman spectroscopy. In addition, research using nanostructures for visual applications was introduced for (1) harnessing nanostructures for full-color pixel printing and (2) exploiting metallic nanostructures to enhance the imaging resolution under diffraction limits based on the plasmonic effect. Finally, we introduce low cost, high accuracy, and fast lithographic methods based on the plasmonic effect by exploiting metallic nanostructures.  相似文献   
974.
In this article, we introduce a framework to address filtering and smoothing with mobile sensor networks for distributed parameter systems. The main problem is formulated as the minimization of a functional involving the trace of the solution of a Riccati integral equation with constraints given by the trajectory of the sensor network. We prove existence and develop approximation of the solution to the Riccati equation in certain trace-class spaces. We also consider the corresponding optimization problem. Finally, we employ a Galerkin approximation scheme and implement a descent algorithm to compute optimal trajectories of the sensor network. Numerical examples are given for both stationary and moving sensor networks.  相似文献   
975.
In this study, ZnO nanorods (NRs) and nanocombs (NCs) are synthesized by simple galvanostatic electrochemical deposition technique, without prepared any ZnO seed-layer or catalyst. The effect of the different morphologies on the UV sensing characteristics has been studied under ambient conditions. The photoluminescence (PL) spectra and time-dependent photoresponse of the ZnO nanostructures exhibited good optical properties. At room temperature, NCs showed superior response with 9% change of its resistance, few seconds response time and fully recovery. Inversely, in high temperature ZnO NRs indicated better response than NCs with the variation of 25% of its resistance. The dependence photoresponse on temperature demonstrated clearly how surface-defects affect on UV response of ZnO nanostructures. Our approach is to provide a simple and cost-effective way to fabricate UV detectors.  相似文献   
976.
The design of core–shell heteronanostructures is powerful tool to control both the gas selectivity and the sensitivity due to their hybrid properties. In this work, the SnO2–ZnO core–shell nanowires (NWs) were fabricated via two-step process comprising the thermal evaporation of the single crystalline SnO2 NWs core and the spray-coating of the grainy polycrystalline ZnO shell for enhanced ethanol sensing performance. The as-obtained products were investigated by X-ray diffraction, scanning electron microscopy, and photoluminescence. The ethanol gas-sensing properties of pristine SnO2 and ZnO–SnO2 core–shell NW sensors were studied and compared. The gas response to 500 ppm ethanol of the core–shell NW sensor increased to 33.84, which was 12.5-fold higher than that of the pristine SnO2 NW sensor. The selectivity of the core–shell NW sensor also improved. The response to 100 ppm ethanol was about 14.1, whereas the response to 100 ppm liquefied petroleum gas, NH3, H2, and CO was smaller, and ranged from 2.5 to 5.3. This indicates that the core–shell heterostructures have great potential for use as gas sensing materials.  相似文献   
977.
In the present paper, another latent capability of SWCNT as a mass sensor is investigated. The relationship between the resonant frequency, dynamic pull-in voltage at the resonance frequency shift, and the attached mass is established by using the nonlocal Euler–Bernoulli beam theory. Using this relationship, a general closed-form nonlinear sensor-equation has been derived for the detection of the mass attached to the SWCNT. The aim of this study and present model is to show the sensitivity of the Cantilevered SWCNT to the values and positions of attached mass. Moreover, the results indicate that by increasing the value of attached mass and considering a single non-local scaling parameter (e0), the values of dynamic pull-in voltage at the resonance frequency shift are decreased. Because of the small scaling parameter (e0), the mass sensitivity of carbon nanotube increases, when the position of the attached mass is in the tip of a Cantilevered SWCNT length. The authority and the accuracy of these formulas are examined with other pull-in sensor equations in literatures. The results demonstrate that the new sensor equation can be applied for CNT-based mass sensors with rational accuracy.  相似文献   
978.
油井含水率是油田开发过程中的一个重要指标。光纤传感器具有体积小、重量轻、抗干扰能力强、实时、高效、准确等优点,将其应用于石油测井,有利于提高勘探效率。介绍测井应用中原油含水率计量仪的结构,分析了光纤传感器对混合液体含水率测量的基本原理。激光在弯曲光纤中的传输效率随外界混合介质折射率的变化而改变,根据光纤输出光功率的大小可以测量外界混合介质的组成成分。通过数值模拟,给出了光纤传感器中光束强度随混合液体含水率的变化现象,计算得到混合液体中含水率测量结果。结果表明,光纤传感器计量仪能实现0%~100%含水量的连续测量。最后基于数值模拟结果讨论了系统设计中的注意事项。  相似文献   
979.
We describe the optimisation of RadLine®; a small, real time, remotely operated radiation detector, which consists of an inorganic scintillation crystal coupled to a fibre optic cable transporting produced photons to a CCD camera some distance away. RadLine® is tested in a beta and gamma narrow radiation field of 2.4 GBq, from a Caesium-137 (662 KeV) source, at doses rates between 0.125 mSvhr−1 and 10 mSvhr−1. Our results establish that the lower limit of the device corresponds to a dose rate of 0.2 mSvhr−1, constrained by the signal to noise ratio of the instrument. We also demonstrate the process of characterising the RadLine® for utilisation underwater due to its partial electrical inactiveness; and to consider how the instrument might perform in aquatic environments and ultimately in a First Generation Magnox Storage Ponds (FGMSP). The RadLine® brings a marked difference to actual underwater radiation monitoring devices such as; HPGe, CZT and GM detectors, which not only incorporate the whole electronics within and are more bulky, only perform over a short range. The RadLine®’s design offers signification value for intermediate (>100 m) and long range detection.  相似文献   
980.
An integrated intra‐laser‐cavity microparticle sensor based on a dual‐wavelength distributed‐feedback channel waveguide laser in ytterbium‐doped amorphous aluminum oxide on a silicon substrate is demonstrated. Real‐time detection and accurate size measurement of single micro‐particles with diameters ranging between 1 µm and 20 µm are achieved, which represent the typical sizes of many fungal and bacterial pathogens as well as a large variety of human cells. A limit of detection of ∼500 nm is deduced. The sensing principle relies on measuring changes in the frequency difference between the two longitudinal laser modes as the evanescent field of the dual‐wavelength laser interacts with micro‐sized particles on the surface of the waveguide. Improvement in sensitivity far down to the nanometer range can be expected upon stabilizing the pump power, minimizing back reflections, and optimizing the grating geometry to increase the evanescent fraction of the guided modes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号