首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3275篇
  免费   42篇
  国内免费   15篇
化学   104篇
晶体学   1篇
力学   36篇
综合类   1篇
数学   2994篇
物理学   196篇
  2022年   19篇
  2021年   16篇
  2020年   12篇
  2019年   57篇
  2018年   62篇
  2017年   30篇
  2016年   22篇
  2015年   23篇
  2014年   62篇
  2013年   239篇
  2012年   80篇
  2011年   154篇
  2010年   159篇
  2009年   203篇
  2008年   216篇
  2007年   230篇
  2006年   156篇
  2005年   120篇
  2004年   100篇
  2003年   97篇
  2002年   64篇
  2001年   48篇
  2000年   39篇
  1999年   80篇
  1998年   68篇
  1997年   62篇
  1996年   77篇
  1995年   62篇
  1994年   86篇
  1993年   75篇
  1992年   60篇
  1991年   53篇
  1990年   34篇
  1989年   37篇
  1988年   29篇
  1987年   35篇
  1986年   31篇
  1985年   57篇
  1984年   34篇
  1983年   32篇
  1982年   39篇
  1981年   31篇
  1980年   30篇
  1979年   15篇
  1978年   21篇
  1977年   22篇
  1976年   27篇
  1975年   7篇
  1974年   6篇
  1973年   5篇
排序方式: 共有3332条查询结果,搜索用时 31 毫秒
101.
Differential calculus on quantized simple lie groups   总被引:1,自引:0,他引:1  
Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q are also discussed.  相似文献   
102.
A simpler set of axioms of the theory of compact matrix quantum groups (pseudogroups) is found.Supported by Japan Society for Promoting Science. On leave from the Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Hoa 74, 00-682 Warsaw, Poland.  相似文献   
103.
Conclusion Nous espérons avoir convaincu le lecteur qu'il peut être utile de considérer la classe de Maslov comme une classe bornée. Dans [Gh], nous avons montré que la classe d'Euler bornée pour un groupe d'homéomorphismes directs du cercle rend compte de la dynamique topologique de ce groupe. Existe-t-il un résultat analogue pour Sp(2n,)? En d'autres termes, soit un groupe discret et 1, 2 deux représentations de dans Sp(2n,). On suppose que les cocycles 1 * et 2 * définissent la même classe bornée. Que peut-on en conclure sur 1 et 2?Par ailleurs, l'article [At l] traite aussi d'invariants sur SL(2,) différents de ceux que nous avons considérés, comme par exemple les fonctionsL de Shimizu. Est-il possible de les faire rentrer naturellement dans notre cadre?
  相似文献   
104.
The authors rigorously prove that the exponent for the mean square displacement of self-avoiding random walk on the Sierpinski gasket is
  相似文献   
105.
Finite and infinite metric spaces % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] that are polynomial with respect to a monotone substitution of variable t(d) are considered. A finite subset (code) W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] is characterized by the minimal distance d(W) between its distinct elements, by the number l(W) of distances between its distinct elements and by the maximal strength (W) of the design generated by the code W. A code W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] is called a maximum one if it has the greatest cardinality among subsets of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] with minimal distance at least d(W), and diametrical if the diameter of W is equal to the diameter of the whole space % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\]. Delsarte codes are codes W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] with (W)2l(W)–1 or (W)=2l(W)–2>0 and W is a diametrical code. It is shown that all parameters of Delsarte codes W) % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] are uniquely determined by their cardinality |W| or minimal distance d(W) and that the minimal polynomials of the Delsarte codes W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] are expansible with positive coefficients in an orthogonal system of polynomials {Q i(t)} corresponding to % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\]. The main results of the present paper consist in a proof of maximality of all Delsarte codes provided that the system {Q i)} satisfies some condition and of a new proof confirming in this case the validity of all the results on the upper bounds for the maximum cardinality of codes W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \]% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] with a given minimal distance, announced by the author in 1978. Moreover, it appeared that this condition is satisfied for all infinite polynomial metric spaces as well as for distance-regular graphs, decomposable in a sense defined below. It is also proved that with one exception all classical distance-regular graphs are decomposable. In addition for decomposable distance-regular graphs an improvement of the absolute Delsarte bound for diametrical codes is obtained. For the Hamming and Johnson spaces, Euclidean sphere, real and complex projective spaces, tables containing parameters of known Delsarte codes are presented. Moreover, for each of the above-mentioned infinite spaces infinite sequences (of maximum) Delsarte codes not belonging to tight designs are indicated.  相似文献   
106.
We add to the known examples of complete Kähler manifolds with negative sectional curvature by showing that the following three classes of domains in euclidean spaces also belong: perturbations of ellipsoidal domains in ?n, intersections of complex-ellipsoidal domains in ?2, and intersections of fractional linear transforms of the unit ball in ?2. In the process, we prove the following theorem in differential geometry: in the intersection of two complex-ellipsoidal domains in ?2, the sum of the Bergman metrics is a Kähler metric with negative curvature operator.  相似文献   
107.
Let (X, A) be a measurable space, Θ ? R an open interval and PΩA, Ω ? Θ, a family of probability measures fulfilling certain regularity conditions. Let Ωn be the maximum likelihood estimate for the sample size n. Let λ be a prior distribution on Θ and let Rn,x be the posterior distribution for the sample size n given x ? Xn. L: Θ × Θ → R denotes a loss function fulfilling certain regularity conditions and Tn denotes the Bayes estimate relative to λ and L for the sample size n. It is proved that for every compact K ? Θ there exists cK ≥ 0 such that
suptheta;∈KPtheta;nh{x∈Xn∥ Tn(x) ? ?nx|? cK(log n)n?} = o(n?12).
This theorem improves results of Bickel and Yahav [3], and Ibragimov and Has'minskii [4], as far as the speed of convergence is concerned.  相似文献   
108.
LetK be a ring with an identity 1 0 andM, L two unitaryK-modules. Then, for any additive mappingf:M L, the setH f :={ K f(x)=f(x) for allx M} forms a subring ofK, the homogeneity ring off. It is shown that, forM {0},L {0} and any subringS ofK for whichM is a freeS-module, there exists an additive mappingf:ML such thatH f =S. This result is applied to the four Cauchy functional equations, and it leads also to an answer to the question as to whether it is possible to introduce onM a multiplication ·:M × M M makingM into a ring but not into aK-algebra.  相似文献   
109.
The behavior of water in close proximity to other materials under ambient conditions is of great significance due to its importance in a broad range of daily applications and scientific research. The structure and dynamics of water at an interface or in a nanopore are often significantly different from those of its bulk counterpart. Until recently, experimental access to these interfacial water structures was difficult to realize. The advent of two-dimensional materials, especially graphene, and the availability of various scanning probe microscopies were instrumental to visualize, characterize and provide fundamental knowledge of confined water. This review article summarizes the recent experimental and theoretical progress in a better understanding of water confined between layered Van der Waals materials. These results reveal that the structure and stability of the hydrogen bonded networks are determined by the elegant balance between water-surface and water-water interactions. The water-surface interactions often lead to structures that differ significantly from the conventional bilayer model of natural ice. Here, we review the current knowledge of water adsorption in different environments and intercalation within various confinements. In addition, we extend this review to cover the influence of interfacial water on the two-dimensional material cover and summarize the use of these systems in potential novel applications. Finally, we discuss emerged issues and identify some flaws in the present understanding.  相似文献   
110.
We consider a continuous semi-martingale sampled at hitting times of an irregular grid. The goal of this work is to analyze the asymptotic behavior of the realized volatility under this rather natural observation scheme. This framework strongly differs from the well understood situations when the sampling times are deterministic or when the grid is regular. Indeed, neither Gaussian approximations nor symmetry properties can be used. In this setting, as the distance between two consecutive barriers tends to zero, we establish central limit theorems for the normalized error of the realized volatility. In particular, we show that there is no bias in the limiting process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号