首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1247篇
  免费   86篇
  国内免费   173篇
化学   1029篇
晶体学   13篇
力学   161篇
综合类   6篇
数学   14篇
物理学   283篇
  2023年   17篇
  2022年   47篇
  2021年   62篇
  2020年   57篇
  2019年   41篇
  2018年   38篇
  2017年   44篇
  2016年   56篇
  2015年   46篇
  2014年   58篇
  2013年   148篇
  2012年   58篇
  2011年   72篇
  2010年   65篇
  2009年   60篇
  2008年   87篇
  2007年   69篇
  2006年   65篇
  2005年   58篇
  2004年   53篇
  2003年   41篇
  2002年   37篇
  2001年   28篇
  2000年   35篇
  1999年   21篇
  1998年   22篇
  1997年   13篇
  1996年   17篇
  1995年   19篇
  1994年   7篇
  1993年   18篇
  1992年   13篇
  1991年   12篇
  1990年   8篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
排序方式: 共有1506条查询结果,搜索用时 312 毫秒
51.
The utilization of solid particles in aqueous foam has a great potential in improving fire fighting efficiency. In this study, aqueous foam supported by micro fly-ash (FA) was prepared and its stability in a specific type of oil was characterized. Firstly, different amount of FA was added to study the influence of FA concentration on foamability. It showed that within a specific extent, foam expansion ratio increased with the increasing of FA concentration. And compared with conventional foams, oil resistance of FA stabilized foams, which was investigated by analyzing drainage rate and evolution process with a self-made apparatus, was remarkably improved when FA concentration exceed 4.8wt.%. Secondly, SiO2 and Al2O3 particles with different median sizes were used to study the effect of particle size on stability. However, the smaller hydrophilic particles didn’t behave better as expected. Moreover, the foam stability in three hydrocarbons was evaluated in the same way. The results indicated that the short chain hydrocarbons had much stronger detrimental effect to both two-phase foam and three-phase foam. But overall, the three-phase foam stabilized by FA exhibited much better oil resistance, so it can be used as a promising material for pool fire extinguishing and prevention.GRAPHICAL ABSTRACT  相似文献   
52.
Xanthan enhanced foam (XGF) is a newly developed chemical agent for enhanced oil recovery in high-temperature and high-salinity reservoirs. In this paper, laboratory experiments were performed to characterize the morphology and foam properties of XGF, to study its performance under different temperature and different salinity conditions, respectively. Based on simulate reservoir formation conditions of Xidaliya field, a series of research on XGF were conducted. The experimental results showed that the scanning electron microscopy of XGF reflected a more viscoelastic and stable nature of the foam system. High temperature had a great adverse impact upon the stability of XGF, and the increase of salinity in the solution helped to improve the stability of foam. The foam stability increased remarkably when XG4 is added, and an increase in ambient pressure made enhancement of foam stability became more noticeable. In the presence of crude oil, Xanthan could enhance the stability of emulsions and was more favorable to stabilize foam. XG4 enhanced foam had dramatic properties for mobility controlling and oil displacement in the porous media.  相似文献   
53.
The foam performances of 3‐dodecoxy‐2‐hydroxypropyl trimethylammonium chloride (C12TAC) have been determined in the existence of different relative amount of polymer. The experimental results show that the foaming ability of the mixture systems of the C12TAC/PEG and C12TAC/PVP is stronger than that of the surfactant solutions in the absence of polymer, and with the increase of relative amount of polymer both foaming efficiency and foam stability of the surfactant solutions are evidently enhanced. For the aqueous solution of the surfactant, effect of temperature on foaming properties has also been examined. The results show that both the foaming ability and stability of the foams of the surfactant solutions are highest (or strongest) at 30°C.  相似文献   
54.
Foam, as a non-Newtonian fluid, plays an important role in the underbalanced drilling technique in oil field development. The rheological properties of drilling fluids, such as foam, have a direct effect on flow characteristics and hydraulic performance. Two rheological models—the Herschel–Bulkley model and power law—were fitted to two foam systems in this study. Computational fluid dynamics (CFD) was used to simulate the effect of the rheological models on solid–liquid (cuttings transport) hydraulics in concentric and eccentric annulus during the foam drilling operation. The simulation results are compared to the experimental data from previous studies. The results of CFD using the power law model are in good agreement with experimental results in horizontal annulus with respect to the Herschel–Bulkley model with relative error less than 8%. Thus, for CFD cuttings transport for simulations in inclined and horizontal annulus, it is best to use the power law's rheological model parameters.  相似文献   
55.
李忠明 《高分子科学》2013,31(2):211-217
Current-voltage electrical behavior of in situ microfibrillar carbon black (CB)/poly(ethylene terephthalate) (PET)/polyethylene (PE) (m-CB/PET/PE) composites with various CB concentrations at ambient temperatures was studied under a direct-current electric field. The current-voltage (I-V) curves exhibited nonlinearity beyond a critical value of voltage. The dynamic random resistor network (DRRN) model was adopted to semi-qualitatively explain the nonlinear conduction behavior of m-CB/PET/PE composites. Macroscopic nonlinearity originated from the interfacial interactions between CB/PET micro fibrils and additional conduction channels. Combined with the special conductive networks, an illustration was proposed to interpret the nonlinear I-V characteristics by a field emission or tunneling mechanism between CB particles in the CB/PET microfibers intersections.  相似文献   
56.
A stable chelating resin matrix was prepared by covalently linking resorcinol with polyurethane foam matrix through a –N=N– group. Preconcentration and determination of trace Ag+ and Hg2+ ions from samples of different origin, using Res-PUF, were studied. Various conditions influencing the sorption of these metal ions onto Res-PUF were optimized. The kinetics of sorption of the Ag+ and Hg2+ by Res-PUF were found to be fast, reached equilibrium in few minutes (5–10?min) and followed a first-order rate equation with an overall rate constant k in 0.102 and 0.267/min, respectively. Study of the variation of the sorption of the tested metal ions with temperature yielded average values for ΔG, ΔH and ΔS of ?3.94, ?22.02 and ?58.37, respectively. The mean free sorption energy (E) computed from the Dubinin–Radushkevich (D–R) isotherm was found to be equal to 8.91 kJ/mol, which reflects the chelation sorption process. The capacities of the foam material were 0.15 and 0.07?mmol/g for Ag+ and Hg2+, respectively. Preconcentration factors of?>?50 were achieved (RSD?≈?5.99). The proposed preconcentration procedure was applied successfully to the determination of trace metal ions in natural and wastewater samples.  相似文献   
57.
Dithiocarbamate modified polyurethane foam (DTC-PUF) was synthesized as a new solid-phase extraction sorbent for the preconcentration and determination of Fe(II), Mn(II) and Cu(II) in environmental samples using flame atomic absorption spectrometry. Maximum extraction of the elements was achieved at pH 5–7 and flow rate 3 mL min?1. Quantitative desorption was achieved by 10 mL from 1.0 mol L?1 HCl solution. The capacity of the sorbent was 149.2 ± 0.5, 237.5 ± 0.2, 200.2 ± 0.1 μg g?1 and the limit of detection was of 0.015, 0.015 and 0.012 μg mL?1for Fe(II), Mn(II) and Cu(II), respectively. A preconcentration factor of 100 was obtained for all elements. The developed method was successfully applied to the determination of the tested elements in water (tap and lake) and plant (spinach and parsley leaves) samples and showed good recovery values from 98 to 111% with corresponding RSD values ranged from 0.6 to 8.6%.  相似文献   
58.
The investigation of highly efficient catalysts for the electrochemical oxidation of glucose is the most critical challenge to commercialize nonenzymatic glucose sensors, which display a few attractive superiorities including the sufficient stability of their properties and the desired reproducibility of results over enzyme electrodes. Herein we propose a new and very promising catalyst: Pt cubes well‐dispersed on the porous Cu foam, for the the electrochemical oxidation reaction of glucose in neutral media. The catalyst is fabricated in situ on a homemade screen‐printed carbon electrode (SPCE) substrate through initially synthesizing the three‐dimensional (3D) porous Cu foam using a hydrogen evolution assisted electrodeposition strategy, followed by electrochemically reducing the platinic precursor simply and conveniently. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) proofs demonstrate that Pt cubes, with an average size (the distance of opposite faces) of 185.1 nm, highly dispersed on the macro/nanopore integrated Cu foam support can be reproducibly obtained. The results of electrochemical tests indicate that the cubic Pt‐based catalyst exhibits significant enhancement on the catalytic activity towards the electrooxidation of glucose in the presence of chloride ions, providing a specific activity 6.7 times and a mass activity 5.3 times those of commercial Pt/C catalysts at ?0.4 V (vs. Ag/AgCl). In addition, the proposed catalyst shows excellent stability of performance, with only a 2.8 % loss of electrocatalytic activity after 100 repetitive measurements.  相似文献   
59.
利用表面引发原子转移自由基聚合(SI-ATRP)在聚对苯二甲酸乙二醇酯(PET)薄膜表面接枝苯乙烯和4-氟苯乙烯的共聚物.研究不同反应时间和不同配比下接枝共聚物对聚酯薄膜表面组成、结构和性能的影响.通过傅利叶变换红外光谱仪(ATR/FTIR),X-射线光电子能谱仪(XPS),凝胶渗透色谱(GPC)和扫描电子显微镜(SEM)对接枝改性前后PET薄膜的表面组成,结构和形貌进行分析;利用接触角测试和表面能计算对比研究接枝改性前后PET薄膜的表面性能.结果表明反应时间和单体百分含量对接枝百分率及接触角有一定的影响,随着反应时间的增长,聚酯薄膜表面接枝百分率增大,接触角增加,表面自由能下降.  相似文献   
60.
The foam stability (drainage half-life) of α-olefin sulfonate (AOS) with partially hydrolyzed polyacrylamide (HPAM) or xanthan gum (XG) solution was evaluated by the Warring Blender method. With the increase of polymer (HPAM or XG) concentration, foam stability of the surfactant–polymer complexes increased, and the drainage half-life of AOS-XG foam was higher than that of AOS-HPAM foam at the same polymer and surfactant concentration. With the addition of polymer (HPAM or XG), the viscoelasticity of bulk solution and the liquid film were enhanced. The viscoelasticity of AOS-XG bulk solution and liquid film were both higher than that of AOS-HPAM counterparts.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号